Examples The Slope of a Line

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define and find the slope of a line.
- 2. Define the slope-intercept form of a linear equation in two variables.

Example 1: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (-1, 3) and (-4, -6).

We will let (-1, 3) equal (x_1, y_1) and (-4, -6) equal (x_2, y_2) . However, you can also let (-4, -6) equal (x_1, y_1) and (-1, 3) equal (x_2, y_2) . In either case, you will get the same answer.

Let's say that (-4, -6) equals (x_1, y_1) and (-1, 3) equals (x_2, y_2) . Be sure not to get confused!

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - (-6)}{-1 - (-4)} = \frac{3 + 6}{-1 + 4} = \frac{9}{3} = 3$$

Example 2: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (6, 3) and (6, 4).

Let's say that (6, 3) is (x_1, y_1) and (6, 4) is (x_2, y_2) . Be sure not to get confused!

Then
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 3}{6 - 6} = \frac{1}{0}$$

Since there is a 0 in the denominator, this particular slope is undefined.

Example 3: Calculate the Slope of a Line

Find the slope of the line passing through the points determined by the ordered pairs (1, 5) and (-9, 5).

Let's say that (1, 5) is (x_1, y_1) and (-9, 5) is (x_2, y_2) . Be sure not to get confused! Then

$$m = \frac{y_2 - y_1}{x_2 - y_{x1}} = \frac{5 - 5}{-9 - 1} = \frac{0}{-10} = 0$$

Since there is a 0 in the numerator, this particular slope equals 0. Please note the difference between Example 3 and Example 4!