Examples

Systems of Linear Equations in Three Variables
Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Draw a three-dimensional coordinate system.
2. Memorize the characteristics of a system of three linear equations in three variables.
3. Solve systems of three linear equations in three variables.

Example 1: Solve a System (1 of 5)

Solve the following system. Write its solution as an ordered triple.

$$
\left\{\begin{aligned}
&-2 x-4 y-2 z=-18 \\
&-4 x-y+2 z=10 \\
& 4 x+3 y+2 z=10 \text { Equation } 1 \\
& \text { Equation } 2
\end{aligned}\right.
$$

Let's select Equation 1 and Equation 2 and eliminate the z-terms. This will result in a new equation in x and y.

$$
+\begin{array}{cl}
-2 x-4 y-2 z=-18 & \text { Equation } 1 \\
+-4 x-y+2 z=10 & \text { Equation } 2 \\
\hline-6 x-5 y=-8 & \text { (new) Equation } 4
\end{array}
$$

Example 1: Solve a System (2 of 5)

Next, let's use Equation 1 and Equation 3 in the system and also eliminate the z-terms. This will result in another new equation also in x and y.

$$
\begin{aligned}
-2 x-4 y-2 z & =-18 \\
+\quad 4 x+3 y+2 z & =10
\end{aligned} \quad \begin{aligned}
& \text { Equation 1 } \\
& \frac{2 x-y=-8}{}
\end{aligned} \begin{aligned}
& \text { Equation } 3 \\
& \text { (new) Equation } 5
\end{aligned}
$$

Example 1: Solve a System (3 of 5)

Now, we will solve a system containing Equations 4 and 5 by eliminating the x-terms. This lets us find the y-coordinate of the point of intersection (solution).

$$
\left\{\begin{aligned}
-6 x-5 y=-8 & \text { Equation } 4 \\
2 x-y=-8 & \text { Equation } 5
\end{aligned}\right.
$$

However, here we will first multiply all terms in Equation 5 by the number 3 to get the following:

$$
\begin{array}{rr}
-6 x-5 y=-8 & \text { Equation } 4 \\
+\quad 6 x-3 y=-24 & 3 \cdot \text { Equation } 5
\end{array}
$$

$$
y=4 \quad \text { This is the } y \text {-coordinate of the point of intersection! }
$$

Example 1: Solve a System (4 of 5)

Next, we will substitute the y in either Equation 4 or 5 with $y=4$ to find the x-coordinate of the point of intersection (solution).

Let's use Equation 4 and replace its y with $y=4$.

$$
-6 x-5 y=-8 \quad \text { (Equation 4) }
$$

$-6 x-5(4)=-8$
$-6 x-20=-8$
$-6 x=12$
$x=-2$ This is the x-coordinate of the point of intersection!

Example 1: Solve a System (5 of 5)

Finally, we will substitute x and y in either Equation 1, 2, or 3 with $y=4$ and $x=-2$ into to find the z-coordinate of the point of intersection (solution).

Let's use Equation 1 and replace its y with $y=4$ and its x with $x=-2$.

$$
-2 x-4 y-2 z=-18 \quad \text { (Equation 1) }
$$

$$
-2(-2)-4(4)-2 z=-18
$$

$$
4-16-2 z=-18
$$

$$
-12-2 z=-18
$$

$$
-2 z=6
$$

$$
z=3 \quad \text { This is the } z \text {-coordinate of the point of intersection! }
$$

We can now write the solution of the system as the ordered triple $(-2,4,3)$.

Example 2: Solve a System (1 of 5)

Solve the following system. Write its solution as an ordered triple.

$$
\left\{\begin{aligned}
2 x+5 y+6 z & =19 & & \text { Equation 1 } \\
y-2 z & =0 & & \text { Equation 2 } \\
x-y & =2 & & \text { Equation 3 }
\end{aligned}\right.
$$

Let's select Equation 1 and Equation 2 and eliminate the y-terms. This will result in a new equation in x and z.
However, here we will first multiply all terms of Equation 2 by the number -5 to get the following:

$$
+\begin{aligned}
2 x+5 y+6 z & =19 & & \text { Equation } 1 \\
-5 y+10 z & =0 & & -5 \cdot \text { Equation } 2 \\
\hline 2 x+16 z & =19 & & \text { (new) Equation } 4
\end{aligned}
$$

Example 2: Solve a System (2 of 5)

Next let's use Equation 1 and Equation 3 and also eliminate the y-terms. This will result in another new equation in x and z.

$$
\begin{aligned}
2 x+5 y+6 z & =19 & & \text { Equation } 1 \\
x-y & =2 & & \text { Equation } 3
\end{aligned}
$$

However, we will have to multiply all terms of Equation 3 by the number 5 to get the following:

$$
\begin{array}{rlrl}
2 x+5 y+6 z & =19 & & \text { Equation } 2 \\
+5 x-5 y & =10 & & 5 \cdot \text { Equation } 3 \\
\hline 7 x+6 z=29 & & \text { (new) Equation } 5
\end{array}
$$

Example 2: Solve a System (3 of 5)

Now, we will solve a system containing Equations 4 and 5 by eliminating the x-terms. This lets us find the z-coordinate of the point of intersection.
$\left\{\begin{aligned} 2 x+16 z & =19 \\ 7 x+6 z & =29\end{aligned} \quad\right.$ Equation 4

However, here we will first multiply all terms in Equation 4 by the number 7 and all terms in Equation 5 by the number -2 to get the following:

$$
\begin{array}{rlrl}
14 x+112 z & =133 \\
+14 x-12 z & =-58 \\
\hline 100 z & =75 & & 7 \cdot \text { Equation } 4 \\
z & =\frac{75}{100}=\frac{3}{4} \quad & & \text { This is the } z \text {-coordinate of the point of intersection! } 5
\end{array}
$$

Example 2: Solve a System (4 of 5)

Next, we will substitute z in either Equation 4 or 5 with $z=\frac{3}{4}$ to find the x-coordinate of the point of intersection (solution).

Let's use Equation 4 and replace its z with $z=\frac{3}{4}$.
$2 x+16 z=19 \quad$ (Equation 4)
$2 x+16\left(\frac{3}{4}\right)=19$
$2 x+12=419$
$2 x=7$
$x=\frac{7}{2} \quad$ This is the x-coordinate of the point of intersection!

Example 2: Solve a System (5 of 5)

Finally, we will substitute x and z in either Equation 1, 2, or 3 with $x=\frac{7}{2}$ and $z=\frac{3}{4}$ to find the y-coordinate of the point of intersection (solution).
Let's use Equation 1 which is $2 x+5 y+6 z=19$ and replace its z with $z=\frac{3}{4}$ and its x with $x=\frac{7}{2}$.
$2\left(\frac{7}{2}\right)+5 y+6\left(\frac{3}{4}\right)=19$
$7+5 y+\frac{18}{4}=19$
$\frac{46}{4}+5 y=19$
$5 y=\frac{30}{4}$
$y=\frac{3}{2} \quad$ This is the y-coordinate of the point of intersection!
We can now write the solution of the system as the ordered triple $\left(\frac{7}{2}, \frac{3}{2}, \frac{3}{4}\right)$.

Example 3: Solve a System (1 of 5)

Solve the following system. Write its solution as an ordered triple.
$\left\{\begin{array}{rlr}x+4 y-z & =20 & \\ 3 x+2 y+z=8 & \text { Equation 1 } \\ 2 x-3 y+2 z & =-16 & \\ \text { Equation } 2 \\ 2 x\end{array}\right.$
Let's select Equation 1 and Equation 2 and eliminate the z-terms. This will result in a new equation in x and y.

$$
\begin{aligned}
x+4 y-z=20 & \text { Equation 1 } \\
+\begin{array}{l}
3 x+2 y+z=8
\end{array} & \text { Equation 2 } \\
\hline 4 x+6 y=28 & \text { (new) Equation 4 }
\end{aligned}
$$

Example 3: Solve a System (2 of 5)

Next, let's use Equation 1 and Equation 3 in the system and also eliminate the z-terms. This will result in another new equation also in x and y.

$$
\begin{aligned}
x+4 y-z & =20 & \text { Equation 1 } \\
2 x-3 y+2 z & =-16 \quad & \text { Equation 3 }
\end{aligned}
$$

However, here we will first multiply all terms of Equation 1 by the number 2 to get the following:

$$
\begin{aligned}
2 x+8 y-2 z & =40 & & 2 \cdot \text { Equation } 1 \\
+2 x-3 y+2 z & =-16 & & \text { Equation } 3 \\
\hline 4 x+5 y & =24 & & \text { (new) Equation } 5
\end{aligned}
$$

Example 3: Solve a System (3 of 5)

Now, we will solve a system containing Equations 4 and 5 by eliminating the x-terms. This lets us find the y-coordinate of the point of intersection (solution).

$$
\begin{cases}4 x+6 y=28 & \text { Equation } 4 \\ 4 x+5 y=24 & \text { Equation } 5\end{cases}
$$

However, here we will first multiply all terms in Equation 5 by the number - 1 to get the following:

$$
\begin{aligned}
& 4 x+6 y=28 \quad \text { Equation } 4 \\
& +-4 x-5 y=-24 \quad-1 \cdot \text { Equation } 5 \\
& y=4 \quad \text { This is the } y \text {-coordinate of the point of intersection! }
\end{aligned}
$$

Example 3: Solve a System (4 of 5)

Next, we will substitute y in either Equation 4 or 5 with $y=4$ to find the x-coordinate of the point of intersection (solution).

Let's use Equation 5 and replace its y with $y=4$.

$$
4 x+5 y=24 \quad(\text { Equation } 5)
$$

$4 x+5(4)=24$
$4 x+20=24$
$4 x=4$
$x=1 \quad$ This is the x-coordinate of the point of intersection!

Example 3: Solve a System (5 of 5)

Finally, we will substitute x and y in either in either Equation 1, 2, or 3 with $x=1$ and $y=4$ to find the z-coordinate of the point of intersection (solution).
Let's use Equation 2 and replace its y with $y=4$ and its x with $x=1$.
$3 x+2 y+z=8 \quad$ (Equation 2)
$3(1)+2(4)+z=8$
$3+8+z=8$
$11+z=8$
$z=-3 \quad$ This is the z-coordinate of the point of intersection!

We can now write the solution of the system as the ordered triple (1, 4, -3).

