Examples

Rational Equations in One Variable

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Memorize the definition of a rational equation.
2. Know how to solve rational equations.

Example 1: Solve a Rational Equation (1 of 2)

Solve $\frac{x^{2}+x-6}{x^{2}-8 x+12}=0$.
There is only one denominator. We multiply both sides of the equation by it.
$\left(x^{2}-8 x+12\right)\left(\frac{x^{2}+x-6}{x^{2}-8 x+12}\right)=0\left(x^{2}-8 x+12\right)$
Distribute the denominator to ALL terms on each side and solve.

$$
\begin{array}{ll}
\boldsymbol{x}^{2}+\boldsymbol{x}-\mathbf{6}=\mathbf{0} & \text { On the left, cancelled }\left(x^{2}-8 x+12\right) . \\
(\boldsymbol{x}-\mathbf{2})(\boldsymbol{x}+\mathbf{3})=\mathbf{0} & \text { Factored the right, 0 times anything still equals 0. }
\end{array}
$$

By the Zero Product Principle, $x-2=0$ and $x+3=0$.
We find the proposed solutions $x=2$ and $x=-3$.

Example 1: Solve a Rational Equation (2 of 2)

Any time we solve a rational equation, we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $x=-3$ and a denominator of $x^{2}-8 x+12$, we find the following:

$$
(-3)^{2}-8(-3)+12=45
$$

We find that - $\mathbf{3}$ does NOT produce $\mathbf{0}$ in the denominator which makes it a true solution.

Given $x=-2$ and a denominator of $x^{2}-8 x+12$, we find the following:

$$
(2)^{2}-8(2)+12=0
$$

We find that $\mathbf{2}$ produces $\mathbf{0}$ in the denominator which leads to an undefined condition.

In summary, the rational equation has one solution, namely, $x=-3$.

Example 2: Solve a Rational Equation (1 of 2)

Solve $\frac{5}{x+6}-\frac{3}{x}=0$.

Find the smallest number divisible by the denominators in the equation.
$(x+6)$ is factored and is prime. x is factored and is prime.

We will form a special product using the prime factors. That is, the smallest number divisible by the given denominators is $x(x+6)$.

Multiply both sides of the equation by $x(x+6)$.

$$
x(x+6)\left(\frac{5}{x+6}-\frac{3}{x}\right)=x(x+6)(0)
$$

Example 2: Solve a Rational Equation (2 of 2)

Distribute $\boldsymbol{x}(\boldsymbol{x}+6)$ to ALL terms on each side and solve.

$$
\begin{array}{ll}
\mathbf{5} \boldsymbol{x}-\mathbf{3 (} \boldsymbol{x}+\mathbf{6})=\boldsymbol{0} & \text { On the left, we cancelled }(x+6) \text { in the first term and } x \text { in the second term. } \\
\mathbf{5} \boldsymbol{x}-\mathbf{3} \boldsymbol{x}-\mathbf{1 8}=\mathbf{0} & \text { On the right, } 0 \text { times anything still equals } 0 . \\
\mathbf{2 x}=\mathbf{1 8} & \\
\boldsymbol{x}=\mathbf{9} &
\end{array}
$$

We find the proposed solution $x=9$.
Any time we solve a rational equation, we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $x=9$ and denominators of x and $x+6$, we observe that 9 does NOT produce 0 in any of the denominators which makes it a true solution.

In summary, the rational equation has one solution, namely, $x=9$.

Example 3: Solve a Rational Equation (1 of 3)

Solve $\frac{5}{x-2}-\frac{17-x}{2 x-4}=0$.
Find the smallest number divisible by the denominators in the equation.
$(x-2)$ is factored, and the factor is prime.
$2 x-4$ can be factored into $2(x-2)$.

We will form a special product using the prime factors. However, we use all factors only once. Therefore, the smallest number divisible by the given denominators is $2(x-2)$.

Multiply both sides of the equation by $2(x-2)$.

$$
2(x-2)\left[\frac{5}{x-2}-\frac{17-x}{2(x-2)}\right]=2(x-2)(0)
$$

Example 3: Solve a Rational Equation (2 of 3)

Distribute the $2(x-2)$ to ALL terms on each side and solve.
 On the right, 0 times anything still equals 0 .

Please note that we placed the numerator $17-x$ into parentheses to remind us that there is a negative sign in front of the fraction.

Then $10-17+x=0$
and $x=7$
We find the proposed solution $x=7$.

Example 3: Solve a Rational Equation (3 of 3)

Any time we solve a rational equation, we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $x=7$ and denominators of $x-2$ and $2 x-4$, we observe that 7 does NOT produce 0 in any of the denominators which makes it a true solution.

In summary, the rational equation has one solution, namely, $x=7$.

Example 4: Solve a Rational Equation (1 of 2)

Solve $\frac{5 x}{x+1}=3-\frac{5}{x+1}$.
There is one denominator, namely $(x+1)$. The other denominator is 1 since we can write 3 as $\frac{3}{1}$. We multiply both sides of the equation by $(x+1)$.
$(x+1)\left(\frac{5 x}{x+1}\right)=(x+1)\left(3-\frac{5}{x+1}\right)$
Distribute $(x+1)$ to ALL terms on each side and solve.

$$
\begin{array}{ll}
\mathbf{5 x}=\mathbf{3}(\boldsymbol{x}+\mathbf{1})-\mathbf{5} & \text { On the left, cancelled }(x+1) . \text { On the right, cancelled }(x+1) \text { in the second } \\
\mathbf{5 x}=\mathbf{x} \boldsymbol{x}+\mathbf{3 - 5} & \text { term. Note that the } 3 \text { on the right had to be multiplied by }(x+1) \\
\mathbf{5 x} \boldsymbol{x}-\mathbf{3 x}=\mathbf{x}-\mathbf{5} & \\
\boldsymbol{x}=-\mathbf{1} &
\end{array}
$$

Example 4: Solve a Rational Equation (2 of 2)

We find the proposed solution $x=-1$.
Any time we solve a rational equation we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $x=-1$ and a denominator of $x+1$, we observe that -1 produces 0 in the denominator which leads to an undefined situation.

In summary, the rational equation has NO solutions.

Example 5: Solve a Rational Equation (1of 3)

Solve $\frac{4}{b+7}-\frac{8}{b-3}=\frac{6 b-10}{b^{2}+4 b-21}$.
Find the smallest number divisible by the denominators in the equation.
$(b+7)$ is factored, and the factor is prime.
$(b-3)$ is factored, and the factor is prime.
$\left(b^{2}+4 b-21\right)$ can be factored into $(b+7)(b-3)$.

We will form a special product using the prime factors. However, we use the factors only once. Therefore, the smallest number divisible by the given denominators is $(b+7)(b-3)$ and NOT $(b+7)(b-3)(b+7)(b-3)$.

Multiply both sides of the equation by $(b+7)(b-3)$.

Example 5: Solve a Rational Equation (2 of 3)

$$
(b+7)(b-3)\left(\frac{4}{b+7}-\frac{8}{b-3}\right)=\left(\frac{6 b-10}{b^{2}+4 b-21}\right)(b+7)(b-3)
$$

Distribute the $(b+7)(b-3)$ to ALL terms on each side of the equal sign and solve.
$4(b-3)-8(b+7)=6 b-10 \quad$ On the left, we cancelled $(b+7)$ in the first term and $(b-3)$ in the second term. On the right, we cancelled $(b+7)(b-3)$.

Then we use the Distributive Property to solve for b.
$4 b-12-8 b-56=6 b-10$
$-4 b-68=6 b-10$
$-10 b=58$
$b=-\frac{58}{10}=-\frac{29}{5}$

Example 5: Solve a Rational Equation (3 of 3)

We find the proposed solution $b=-\frac{29}{5}$.
Any time we solve a rational equation we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $b=-\frac{29}{5}$ and denominators of $b+7$ and $b-3$, we observe that $-\frac{\mathbf{2 9}}{5}$, which is equal to -5.8, does NOT produce 0 in any of the denominators which makes it a true solution.

In summary, the rational equation has one solution, namely $b=-\frac{29}{5}$.

Example 6: Solve a Rational Equation (1 of 4)

Solve $\frac{4}{x-5}+\frac{8}{x-4}=8$.

Find the smallest number divisible by the denominators in the equation.
$(x-5)$ is factored and is prime.
$(x-4)$ is factored and is prime.
We will form a special product using the prime factors. The smallest number divisible by the given denominators is $(x-5)(x-4)$.

Multiply both sides of the equation by $(x-5)(x-4)$.

$$
(x-5)(x-4)\left(\frac{4}{x-5}+\frac{8}{x-4}\right)=8(x-5)(x-4)
$$

Example 6: Solve a Rational Equation (2 of 4)

Distribute $(x-5)(x-4)$ to ALL terms on each side and solve.

$$
\begin{aligned}
\mathbf{4}(\boldsymbol{x}-\mathbf{4})+\mathbf{8}(\boldsymbol{x}-\mathbf{5})=\mathbf{8}\left(x^{\mathbf{2}} \mathbf{- 9} \boldsymbol{9}+\mathbf{2 0}\right) \quad \begin{array}{l}
\text { On the left of the equal sign, we cancelled }(x-5) \text { in the } \\
\text { first term and }(x-4) \text { in the second term. On the right of } \\
\text { the equal sign, we used Foll to multiply out }(x-5)(x-4)
\end{array}
\end{aligned}
$$

$$
4 x-16+8 x-40=8 x^{2}-72 x+160
$$

Used the Distributive Property on both sides of the equal sign.

Given a $\boldsymbol{x}^{\mathbf{2}}$ we notice that we are dealing with a quadratic equation. Let's write it in general form.
$12 x-56=8 x^{2}-72 x+160$
$8 x^{2}-84 x+216=0$

While factoring might be a possibility, let's just use the Quadratic Formula to solve this equation for x.

Example 6: Solve a Rational Equation (3 of 4)

Given $a=8, b=-84$, and $c=216$, we will write the following:

$$
\begin{aligned}
& x=\frac{-(-84) \pm \sqrt{(-84)^{2}-4(8)(216)}}{2(8)} \\
& x=\frac{84 \pm \sqrt{144}}{16}=\frac{84 \pm 12}{16}
\end{aligned}
$$

We find the proposed solutions $x=6$ and $x=\frac{9}{2}$.

Example 6: Solve a Rational Equation (4 of 4)

Any time we solve a rational equation we must check the proposed solutions in the original equation, rejecting any that produce 0 in any of the denominators.

Given $x=6$ and denominators of $x-5$ and $x-4$, we observe that 6 does NOT produce 0 in any of the denominators which makes it a true solution.

Given $x=\frac{9}{2}$ and denominators of $x-5$ and $x-4$, we observe that $\frac{9}{2}$, which is equal to 4.5, does NOT produce 0 in any of the denominators which makes it a true solution.

In summary, the rational equation has two solutions, namely $x=6$ and $x=\frac{9}{2}$.

