Examples
 Quadratic Equations in One Variable

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define quadratic equations in one variable.
2. Solve quadratic equations using the Quadratic Formula.
3. Solve quadratic equations using factoring.
4. Solve quadratic equations using the Square Root Property.

Example 1: Solve Quadratic Equations Using the Quadratic Formula (1 of 2)

Solve $2 x^{2}+2 x-1=0$ using the quadratic formula. Find only real solutions.
We will use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
In the given quadratic equation, $a=2, b=2$, and $c=-1$. We insert these values into the quadratic formula to get

$$
\begin{aligned}
& x=\frac{-(2) \pm \sqrt{(2)^{2}-4(2)(-1)}}{2(2)} \\
& x=\frac{-2 \pm \sqrt{4+8}}{4} \\
& x=\frac{-2 \pm \sqrt{12}}{4}
\end{aligned}
$$

Example 1: Solve Quadratic Equations Using the Quadratic Formula (2 of 2)

Mathematicians now want you to continue to simplify the solution as follows:
$x=\frac{-2 \pm \sqrt{12}}{4}=\frac{-2 \pm 2 \sqrt{3}}{4}$
Note that the radical was simplified!
and $x=\frac{2(-1 \pm \sqrt{3})}{4}=\frac{-1 \pm \sqrt{3}}{2} \quad \begin{aligned} & \text { Note that a } 2 \text { was factored out of BOTH terms in the } \\ & \text { numerator before we reduced the fraction! }\end{aligned}$
The quadratic equation has two irrational solutions, and they are $\frac{-1-\sqrt{3}}{2}$ and $\frac{-1+\sqrt{3}}{2}$.

Please note that in algebra, we usually leave answers in this form instead of changing them to decimal form.

Example 2: Solve Quadratic Equations Using the Quadratic Formula

Solve $x^{2}-2 x=-2$ using the quadratic formula. Find only real solutions.
Before we can continue, we must first write the equation in the general form $a x^{2}+b x+c=0$. That is, $x^{2}-2 x+2=0$.

We can now see that $a=1, b=-2$, and $c=2$. We insert these values into the quadratic formula to get the following:

$$
\begin{aligned}
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)}=\frac{2 \pm \sqrt{4-8}}{2} \\
& \text { and } x=\frac{2 \pm \sqrt{-4}}{2}
\end{aligned}
$$

We note that the solution contains the imaginary value $\sqrt{-4}$. Without any further work we can state that the quadratic equation has "no real solutions."

Example 3: Solve Quadratic Equations Using the Quadratic Formula

Solve $x^{2}-4 x=-4$ using the quadratic formula. Find only real solutions.
Before we can continue, we must first write the equation in the general form $a x^{2}+b x+c=0$. That is, $x^{2}-4 x+4=0$.

We can now see that $a=1, b=-4$, and $c=4$.
We insert these values into the quadratic formula to get the following:

$$
\begin{aligned}
& x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(4)}}{2(1)}=\frac{4 \pm \sqrt{0}}{2} \\
& x=\frac{4}{2}=2
\end{aligned}
$$

The quadratic equation has one integer solution, and it is $x=2$.

Example 4: Solve Quadratic Equations Using Factoring (1 of 2)

Solve $x^{2}+5 x=-6$ by factoring. Find only real solutions.
Let's first change the equation to the general form $a x^{2}+b x+c=0$.

$$
x^{2}+5 x+6=0
$$

Next, we will write the quadratic expression as a product of its prime factors.
Find all pairs of positive integers whose product is $c=6$.

$$
6=(1)(6) \text { and } 6=(2)(3) \text { and } 6=(-1)(-6) \text { and } 6=(-2)(-3)
$$

Using the pairs above, find one whose sum is $b=5$.
We notice that 2 and 3 have a sum of 5 .

Example 4: Solve Quadratic Equations Using Factoring (2 of 2)

Let's create the template $\left(\begin{array}{ll}x &)(x\end{array}\right)$ and use 2 and 3 as the second terms.

$$
(x+2)(x+3)=0
$$

Now, we will solve this equation using the Zero Product Principle:

$$
\begin{aligned}
& x+2=0 \text { or } x+3=0 \\
& \text { Then } x=-2 \text { or } x=-3
\end{aligned}
$$

See see that the quadratic equation has two integer solutions, and they are $x=-2$ and $x=-3$.

NOTE: We could have used the quadratic formula to get the same solutions.

Example 5: Solve Quadratic Equations Using Factoring (1 of 2)

Solve $x^{2}-4 x=-4$ by factoring. Find only real solutions.
Let's first change the equation to the general form $a x^{2}+b x+c=0$.

$$
x^{2}-4 x+4=0
$$

Next, we will write the quadratic expression as a product of its prime factors.

Find all pairs of positive integers whose product is $c=4$.

$$
4=(1)(4) \text { and } 4=(2)(2) \text { and } 4=(-1)(-4) \text { and } 4=(-2)(-2)
$$

Using the pairs above, find one whose sum is $b=-4$.
We notice that -2 and -2 have a sum of -4 .

Example 5: Solve Quadratic Equations Using Factoring (2of 2)

Let's create the template $\left(\begin{array}{ll}x &)\end{array}(x \quad)\right.$ and use -2 and -2 as the second terms.

$$
(x-2)(x-2)=0
$$

Now, we will solve this equation using the Zero Product Principle:
Since both factors are the same, we only need to set one equal to 0 as follows:

```
x-2 = 0
and }x=
```

The quadratic equation has one integer solution, and it is $x=2$. In Example 3 , we solved the same equation, but we used the quadratic formula!

Example 6: Solve Quadratic Equations Using Factoring

Solve $2 x^{2}+2 x=0$ by factoring. Find only real solutions.
The equation is not a trinomial. However, we note that both terms have a greatest common factor of $2 x$. We will factor it out of each term as follows:
$2 x(x+1)=0$
Now, we will solve this equation using the Zero Product Principle:

$$
\begin{aligned}
& 2 x=0 \text { or } x+1=0 \\
& \text { and } x=0 \text { or } x=-1
\end{aligned}
$$

The quadratic equation has two integer solutions, and they are $x=0$ and $x=-1$.

Example 7: Solve Quadratic Equations Using the Square Root Property

Solve $x^{2}=16$ by the Square Root Property. Find only real solutions.
This equation is already in the form $u^{2}=d$. Here, $u=x$. Therefore, we can use the Square Root Property to state

$$
x= \pm \sqrt{16}= \pm 4
$$

The quadratic equation has two integer solutions, and they are -4 and 4 .
NOTE: We could have used the quadratic formula with $a=1, b=0$, and $c=-16$.

Example 8: Solve Quadratic Equations Using the Square Root Property

Solve $3 x^{2}-21=0$ by the Square Root Property. Find only real solutions.
Before we can continue, we must first write the equation in the form $u^{2}=d$.

$$
\begin{aligned}
& 3 x^{2}-21=0 \\
& 3 x^{2}=21 \\
& x^{2}=7 \quad \text { Note, here } u=x \text { and } d=7 .
\end{aligned}
$$

Now, we can use the Square Root Property to state $x= \pm \sqrt{7}$.
The quadratic equation has two irrational solutions, and they are $x=\sqrt{7}$ and $x=-\sqrt{7}$. We do not usually change them to decimal form!

NOTE: We could have used the quadratic formula with $a=3, b=0$, and $c=-21$.

Example 9: Solve Quadratic Equations Using the Square Root Property

Solve $2 x^{2}+18=0$ by the Square Root Property. Find only real solutions.
Before we can continue, we must first write the equation in the form $u^{2}=d$.

$$
\begin{aligned}
& 2 x^{2}+18=0 \\
& 2 x^{2}=-18 \\
& x^{2}=-9 \quad \text { Note, here } u=x \text { and } d=-9
\end{aligned}
$$

Now, we can use the Square Root Property to state $x= \pm \sqrt{-9}$.
Since the values for x are imaginary, we must state that this quadratic equation has "no real solutions."

NOTE: We could have used the quadratic formula with $a=2, b=0$, and $c=18$.

Example 10: Solve Quadratic Equations (1 of 2)

Solve $3 x^{2}+27 x=0$. Find only real solutions.
Certainly, we could use the Quadratic Formula with $a=3, b=27$, and $c=0$. Since the Quadratic Formula is sort of cumbersome to work with, our first thought should always be factoring or the Square Root Property.

While the given equation has only two terms, the Square Root Property will not easily work because neither term is a constant. So how about factoring? We do notice that both terms have the factor of $3 x$ in common which we can factor out as follows:
$3 x(x+9)=0$
Now, we will solve this equation using the Zero Product Principle.

Example 10: Solve Quadratic Equations (2 of 2)

We set both factors equal to 0 as follows:
$3 x=0$ and $x+9=0$
So that $x=0$ and $x=-9$

We find that the quadratic equation has two integer solution, namely, $x=0$ and $x=-9$.

