Examples Polynomial Functions

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define polynomial functions.
2. Memorize the characteristics of graphs of polynomial functions.
3. Memorize and apply the characteristics of the Zeros of polynomial functions.

Example 1: Vocabulary of Polynomial Functions

a. Name the leading coefficient of the following polynomial function:

$$
f(x)=-x^{5}+6 x^{2}-4 x-1
$$

The leading coefficient is -1 .
b. Name the leading coefficient of the following polynomial function:

$$
g(x)=2 x^{3}+10 x^{2}
$$

The leading coefficient is 2 .

Example 2: Vocabulary of Polynomial Functions

a. Name the degree of the following polynomial function:

$$
f(x)=-x^{5}+6 x^{2}-4 x-1
$$

The degree is 5 .
b. Name the degree of the following polynomial function:

$$
g(x)=2 x^{3}+10 x^{2}
$$

The degree is 3 .

Example 3: Recognize the Characteristics of Graphs of Polynomial Functions

Determine the end behavior of the graph of $\boldsymbol{g}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{3}+\mathbf{3} \boldsymbol{x}^{2}-\mathbf{8 x}-\mathbf{1 2}$.
The degree of the function is 3 , which is odd.
The leading coefficient 2 is positive.

Example 4: Recognize Characteristics of Graphs of Polynomial Functions

Determine the end behavior of the graph of $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x}^{4}-\mathbf{8} \boldsymbol{x}^{2}-\mathbf{9}$.
The degree of the function is 4 , which is even.
The leading coefficient, 1 , is positive.

Example 5: Recognize Characteristics of Graphs of Polynomial Functions

Determine the end behavior of the graph of $\boldsymbol{g}(x)=-x^{3}+2 x^{2}-x+2$
The degree of the function is 3, which is odd.
The leading coefficient - 1 is negative.

Example 6: Recognize Characteristics of Graphs of Polynomial Functions

Determine the end behavior of the graph of $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{X}^{4}+\mathbf{1 6}^{2}$.
The degree of the function is 4 , which is even.
The leading coefficient-1 is negative.

Example 7: Recognize Characteristics of Graphs of Polynomial Functions

Determine the whether the degree is even or odd and whether the leading coefficient a is less than or greater than 0.


```
degree: odd
```

lead coeff: a > 0


```
degree: odd
```

lead coeff: a < 0

Example 8: Apply the Characteristics of Zeros

The polynomial function P is of degree 3. Its Zeros are 0,1 , and -5 . Its leading coefficient is 5 . Find the equation of the polynomial function. Write it as a product of linear factors.

By the Factor Theorem, if a number r is a Zero of the polynomial function, then $(x-r)$ is a linear factor of the function and vice versa.

Given the Zeros and their multiplicities, we can write the polynomial function as a product of linear factors as following:

$$
\begin{aligned}
P(x) & =5(x-0)(x-1)(x-(-5)) \\
& =5 x(x-1)(x+5)
\end{aligned}
$$

Note: Be sure not to forget the leading coefficient 5!

Example 9: Apply the Characteristics of Zeros

The polynomial function P is of degree 9. Its Zeros are
$1+i$ with multiplicity 3
1 - i with multiplicity 3

- 1 with multiplicity 2

4 with multiplicity 1
Its leading coefficient is 1 . Find the equation of the polynomial function. Write it as a product of linear factors.

Given the Zeros and their multiplicities, we can write the polynomial function as a product of linear factors as following:

$$
\begin{aligned}
& P(x)=(x-(-1))^{2}(x-4)(x-(1+i))^{3}(x-(1-i))^{3} \\
& P(x)=(x+1)^{2}(x-4)(x-1-i)^{3}(x-1+i)^{3}
\end{aligned}
$$

Note: Since the leading coefficient is 1 , we usually don't write it.

Example 10: Apply the Characteristics of Zeros

The polynomial function P is of degree 3 and has a leading coefficient of -2 . Its Zeros include 5 and 4 i.

Find the equation of the polynomial function. Write it as a product of linear factors.
By the Factor Theorem, if a number \boldsymbol{r} is a Zero of the polynomial function, then $(\boldsymbol{x}-\boldsymbol{r})$ is a linear factor of the function and vice versa. We also know that imaginary Zeros appear in conjugate pairs. Therefore, $-4 i$ must also be a Zero.

Given the Zeros and their multiplicities, we can write the polynomial function as a product of linear factors as following:

$$
\begin{aligned}
& P(x)=-2(x-5)(x-4 i)(x-(-4 i)) \\
& P(x)=-2(x-5)(x-4 i)(x+4 i)
\end{aligned}
$$

Note: Be sure not to forget the leading coefficient -2 !

