Examples

Logarithmic Equations in One Variable

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Solve logarithmic equations in which not all terms are logarithms.
2. Solve logarithmic equations in which ALL terms are logarithms.

Example 1: Solve Logarithmic Equations (1 of 2)

Solve $\log _{2}(x-4)=3$.

There already exists a single logarithm with coefficient 1. Therefore, we can change to exponential form as follows:
$x-4=2^{3}$
$x-4=8$
$x=12 \quad$ This is the "proposed solution.

Example 1: Solve Logarithmic Equations (2 of 2)

Check $x=12$ in the original equation $\log _{2}(x-4)=3$ to ensure that all logarithm arguments are positive.

```
log}2(12-4)=
\mp@subsup{\operatorname{log}}{2}{}(8)=3 We can stop here because the logarithm argument is positive.
```

We verified that $x=12$ is a true solution.

Example 2: Solve Logarithmic Equations (1 of 2)

Solve $4 \ln (3 x)=8$.
Remember $\ln x$ equals $\log _{e} x$! Here we MUST first isolate the logarithmic expression to get a coefficient of 1 . We do this by dividing both sides by 4 .

$$
\ln (3 x)=2
$$

Now we can change to exponential form.

$$
\begin{aligned}
e^{2} & =3 x \\
x & =\frac{e^{2}}{3}
\end{aligned} \quad \text { We changed to exponential form. }
$$

NOTE: In algebra, we usually do not change solutions to decimal form.

Example 2: Solve Logarithmic Equations (2 of 2)

Check ${ }^{x=\frac{e^{2}}{3}}$ in the original equation $4 \ln (3 x)=8$ to ensure that all logarithm arguments are positive.

$$
\begin{aligned}
4 \ln \left(3 \cdot \frac{e^{2}}{3}\right) & =8 \\
4 \ln \left(e^{2}\right) & =8 \quad \text { We can stop here because the logarithm argument is positive. }
\end{aligned}
$$

We verified that $x=\frac{e^{2}}{3}$ is a true solution.

Example 3: Solve Logarithmic Equations (1 of 3)

Solve $\log x+\log (x-3)=1$.
Remember that $\log x$ equals $\log _{10} x$. Here we MUST first achieve one single logarithm. We do this by using the Product Rule.

$$
\log (x \cdot(x-3))=1
$$

Then we can solve as follows:

$$
\begin{aligned}
& x(x-3)=10^{1} \quad \text { We changed to exponential form. } \\
& x^{2}-3 x=10 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0 \quad \text { We factored this quadratic equation. }
\end{aligned}
$$

Example 3: Solve Logarithmic Equations (2 of 3)

We will now use the Zero Product Principle to solve for x.
$x-5=0$ and $x+2=0$
then $x=5$ and $x=-2$, which are "proposed" solutions.

Check $x=5$ in the original equation $\log x+\log (x-3)=1$ to ensure that all logarithm arguments are positive.

$$
\log (5)+\log (5-3)=1
$$

$$
\log (5)+\log (2)=1 \quad \text { We can stop here because all logarithm arguments are both positive. }
$$

We verified that $x=5$ is a true solution.

Example 3: Solve Logarithmic Equations (3 of 3)

Check $x=-2$ in the original equation to ensure that all logarithm arguments are positive.
$\log (-2)+\log (-2-3)=1 \quad$ Note that both logarithm arguments are NEGATIVE!

We just found that $x=-2$ is NOT a true solution!

In summary, the only true solution is $x=5$.

Example 4: Solve Logarithmic Equations (1 of 5)

Solve $5 \log (4 x)=10 \log (x-3)$.

Here we must first achieve one single logarithm on the right and the left. Dividing both sides by 5 we get
$\log (4 x)=2 \log (x-3)$
Next, we will use the Power Rule to get
$\log (4 x)=\log (x-3)^{2}$

Example 4: Solve Logarithmic Equations (2 of 5)

Given an equality with the logarithm bases on both sides equal and having a coefficient of 1 , the arguments must be equal as well. Therefore, we can set the arguments equal to get
$4 x=(x-3)^{2}$
$4 x=(x-3)(x-3)$
$4 x=x^{2}-6 x+9$
$x^{2}-6 x+9-4 x=0$

Combining like terms, we get $x^{2}-10 x+9=0$

Example 4: Solve Logarithmic Equations (3 of 5)

Since we are obviously dealing with a quadratic equation, we will prepare it for a solution by factoring or possibly by the quadratic formula.

We find that we can factor this to get $(x-1)(x-9)=0$.
We will now use the Zero Product Principle to solve for x.
$x-1=0$ and $x-9=0$
then $x=1$ and $x=9$, which are "proposed" solutions.

Example 4: Solve Logarithmic Equations (4 of 5)

Now we need to check BOTH solutions in the original equation to ensure that the logarithm argument is positive.

Check $x=1$ in the original equation $5 \log (4 x)=10 \log (x-3)$ to ensure that all logarithm arguments are positive.

$$
\begin{aligned}
& 5 \log (4 \cdot 1)=10 \log (1-3) \\
& 5 \log (4)=10 \log (-2)
\end{aligned}
$$

We just found that $x=1$ is NOT a true solution!

Example 4: Solve Logarithmic Equations (5 of 5)

Check $x=9$ in the original equation $5 \log (4 x)=10 \log (x-3)$ to ensure that all logarithm arguments are positive.
$5 \log (4 \cdot 9)=10 \log (9-3)$
$5 \log (36)=10 \log (6) \quad$ We can stop here because all logarithm arguments are positive.
We verified that $x=9$ is a true solution.

In summary, the only true solution is $x=9$.

Example 5: Solve a Logarithmic Equation (1 of 4)

Solve $\ln (x-3)=\ln (7 x-23)-\ln (x+1)$.

Remember that $\ln x$ equals $\log _{e} x$. Here we must first write one single logarithmic expression on the right. We achieve this by using the Quotient Rule.

$$
\ln (x-3)=\ln \left(\frac{7 x-23}{x+1}\right)
$$

Given an equality with the logarithm bases on both sides equal, the arguments must be equal as well. Therefore, we can set the arguments equal to get
$x-3=\frac{7 x-23}{x+1} \quad$ We multiply both sides by the denominator $(x+1)$!

Example 5: Solve a Logarithmic Equation (2 of 4)

We now multiply both sides by the denominator $(x+1)$!
$(x+1)(x-3)=\frac{7 x-23}{x+1} \cdot(x+1)$
$(x-3)(x+1)=7 x-23$
Combining like terms we get $x^{2}-2 x-3=7 x-23$.
Since we are obviously dealing with a quadratic equation, we will prepare it for a solution by factoring or possibly by the quadratic formula.

$$
x^{2}-9 x+20=0
$$

We find that we can factor this to get $(x-5)(x-4)=0$.

Example 5: Solve a Logarithmic Equation (3 of 4)

We will now use the Zero Product Principle to solve for x.
$x-5=0$ and $x-4=0$
then $x=5$ and $x=4$, which are "proposed" solutions.
Check $x=5$ in the original equation $\ln (x-3)=\ln (7 x-23)-\ln (x+1)$ to ensure that all logarithm arguments are positive.

$$
\begin{aligned}
& \ln (5-3)=\ln (7 \cdot 5-23)-\ln (5+1) \\
& \ln (2)=\ln (12)-\ln (6) \quad \text { We can stop here because all logarithm arguments are positive. }
\end{aligned}
$$

We verified that $x=5$ is a true solution.

Example 5: Solve a Logarithmic Equation (4 of 4)

Check $x=4$ in the original equation $\ln (x-3)=\ln (7 x-23)-\ln (x+1)$ to ensure that all logarithm arguments are positive.

$$
\begin{aligned}
& \ln (4-3)=\ln (7 \cdot 4-23)-\ln (4+1) \\
& \ln (1)=\ln (5)-\ln (5) \quad \text { We can stop here because all logarithm arguments are positive. }
\end{aligned}
$$

We verified that $x=4$ is a true solution.

In summary, the equation has two true solutions, namely $x=4$ and $x=5$.

