Examples Linear and Constant Functions

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

Define linear functions.
 Graph linear functions by hand.
 Define and graph constant functions by hand.

Example 1: Graph a Linear Function (1 of 4)

Graph the linear function h(x) = 2x by hand.

```
Let's try the Intercept Method!
```

x-intercept:

Given h(x) = 2x, let h(x) = y = 0 and solve for x 0 = 2x0 = x (dividing both sides by 2!)

The *x*-intercept is 0 and the point associated with the *x*-intercept is (0, 0), which is the origin (the point at which the two coordinate axes intersect).

Example 1: Graph a Linear Function (2 of 4)

```
y-intercept:
Given h(x) = 2x, let x = 0 and solve for h(x) = y.
h(0) = 2(0) = y
```

The *y*-intercept is 0 and the point associated with the *y*-intercept is also (0, 0).

Example 1: Graph a Linear Function (3 of 4)

Most often the *Intercept Method* produces two different points. However, this does not always happen. In our case, the *Intercept Method* only produced one point, namely (0, 0).

Since we need at least two points to graph a line, we will use the *Point-by-Point Plotting Method* to find at least one more point. How about we find two points by letting x be equal to -2 and 2? This way we have a point above the origin and below the origin.

Given h(x) = 2x, we calculate h(-2) = y = 2(-2) = -4and h(2) = y = 2(2) = 4

The coordinates of the additional points are (-2, -4) and (2, 4).

Example 1: Graph a Linear Function (4 of 4)

Graph the function by drawing a line through the points found in the previous three slides.

Reminder: We found the coordinates (-2, -4), (0, 0), and (2, 4).

Example 2: Graph a Constant Function

Graph the Constant Function k(x) = -3 by hand.

As stated already, the graph of the *constant function* is a horizontal line.

We know that the y-intercept is -3, therefore the point associated with the y-intercept must be (0, -3).

In the picture, we drew the point (0, -3), which is the point associated with the *y*-intercept.

Then, we used our knowledge that the graph of the *constant function* is a horizontal line to draw a line through (0, -3) parallel to the *x*-axis.

Example 3: Graph a Linear Function (1 of 3)

Graph the *Identity Function* f(x) = x by hand.

Let's try the Intercept Method!

x-intercept:

```
Given f(x) = x, let f(x) = y = 0 and solve for x.
0 = x
```

The *x*-intercept is 0 and the point associated with the *x*-intercept is (0, 0), which is the origin (the point at which the two coordinate axes intersect).

y-intercept:

```
Given f(x) = x, let x = 0 and solve for f(x) = y.

f(0) = 0 = y

The y-intercept is 0 and the point associated with the y-intercept is also

(0, 0).
```

Example 3: Graph a Linear Function (2 of 3)

Most often the *Intercept Method* produces two different points. However, this does not always happen. In our case, the *Intercept Method* only produced one point, namely (0, 0).

Since we need at least two points to graph a line, we will use the *Point-by-Point Plotting Method* to find at least one more point. How about we find two points by letting x be equal to -2 and 2? This way we have a point above the origin and below the origin.

Given
$$f(x) = x$$
, we then find $f(-2) = y = -2$ and $f(2) = y = 2$.

The coordinates of the additional points are (-2, -2) and (2, 2).

NOTE: In the *Identity Function*, EVERY ordered pair has x- and y-coordinates that are equal!

Example 3: Graph a Linear Function (3 of 3)

Graph the identity function by drawing a line through the points found in the previous three slides.

Reminder: We found the coordinates (-2, -2), (0, 0), and (2, 2). Example 4: Graph a Linear Function (1 of 3)

Graph the linear function $g(x) = \frac{3}{2}x - 3$ by hand.

Let's try the Intercept Method!

x-intercept:

Given $g(x) = \frac{3}{2}x - 3$, let g(x) = y = 0 and solve for x. $0 = \frac{3}{2}x - 3$ $3 = \frac{3}{2}x$ $3\left(\frac{2}{3}\right) = x$ 2 = x

The *x*-intercept is 2 and the point associated with it is (2, 0).

Example 4: Graph a Linear Function (2 of 3)

y-intercept:
Given
$$g(x) = \frac{3}{2}x - 3$$
, let $x = 0$ and solve for $g(x) = y$.
 $g(0) = \frac{3}{2}(0) - 3 = y$

The y-intercept is -3 and the point associated with it is (0, -3).

Example 4: Graph a Linear Function (3 of 3)

Graph the function by drawing a line through the two points associated with the intercepts.

Reminder:

We found the coordinates (2, 0) and (0, -3).

Example 5: Piecewise Defined Functions

The graph below shows what is called a *piecewise-defined function*. Specifically, this one consists of three linear branches. In the middle, we have a horizontal line (constant function). On the left end it is joined to an increasing line and on the right end it is joined to a decreasing line.

Use the graph to find the following in *Interval Notation*. Use **open intervals**, that is, use parentheses.

The function is increasing on which open interval along the x-axis: $(-\infty, -4)$

The function is decreasing on which open interval along the x-axis: $(4, \infty)$

The function is constant on which open interval along the x-axis: (-4, 4)