Examples
 Linear Equations in One Variable
 Based on power point presentations by Pearson Education, Inc.
 Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Memorize the Basic Principles of Equations consisting of four axioms.
2. Memorize the definition of linear equations.
3. Solve linear equations containing integers.
4. Solve linear equations containing fractions.
5. Memorize and use the Cross-Multiplication Principle.

Example 1: Solve a Linear Equation

Solve the linear equation $x-4=20$.
Note that this equation is not in general form! We use the Addition Axiom and add 4 to both sides of the equal sign.
$x-4+4=20+4$ (if you are comfortable, you do not have to show this step)
and $x=24$ which is the proposed solution.
Given $x=24$, we now replace x in the original equation $x-4=20$ with 24 .
$24-4=20$
and $20=20$

This is a true statement, therefore the proposed solution $x=24$ is an actual solution.

Example 2: Solve a Linear Equation

Solve the linear equation $x+5=11$.
Note that his equation is not in general form! We use the Subtraction Axiom and subtract 5 from both sides of the equal sign.
$x+5-5=11-5$ (if you are comfortable, you do not have to show this step) and $x=6$ which is the proposed solution.

Given $x=6$, we now replace x in the original equation $x+5=11$ with 6 .
$6+5=11$
and $11=1$

This is a true statement, therefore the proposed solution $x=6$ is an actual solution.

Example 3: Solve a Linear Equation (1 of 2)

Solve the linear equation $2 x=10$.

Note that this equation is not in general form! We can either use the Division Axiom or the Multiplication Axiom. Let's use the Division Axiom first and then the Multiplication Axiom.

Let's divide both sides of the equal sign by 2 (which is the coefficient of the variable).
$\frac{2 x}{2}=\frac{10}{2}$ and $x=5$ which is the proposed solution.
Now let's use the Multiplication Axiom. That is, let's multiply both sides of the equal sign by $\frac{1}{2}$ (which is the reciprocal of the coefficient of the variable).
$\frac{1}{2}(2 x)=\frac{1}{2}(10)$ and we also find that $x=5$.

Example 3: Solve a Linear Equation (2 of 2)

Given $x=5$, we now replace x in the original equation $2 x=10$ with 5 .

$$
2(5)=10
$$

and $10=10$
This is a true statement, therefore the proposed solution $x=5$ is an actual solution.

Example 4: Solve a Linear Equation (1 of 2)

Solve the linear equation $2(x-4)-5 x=-5$.
Note that this equation is not in general form! We will first simplify the expression on the left side of the equal sign using the Distributive Property.

$$
\begin{aligned}
2 x-8-5 x & =-5 \\
-3 x-8 & =-5 \quad \text { Combined like terms on the left. }
\end{aligned}
$$

Next, we collect variable terms on one side and constants on the other side.

$$
\begin{array}{rlrl}
-3 x-8+8 & =-5+8 & \text { Add } 8 \text { to both sides (Addition Axiom). } \\
-3 x & =3 & & \text { Combined like terms (simplified). }
\end{array}
$$

Example 4: Solve a Linear Equation (2 of 2)

Finally, we "isolate" the variable. That is, let's divide both sides of the equal sign by - 3 (which is the coefficient of the variable).
$\frac{-3 x}{-3}=\frac{3}{-3}$ and $x=-1$ which is the proposed solution.

Given $x=-1$, we now replace x in the original equation $2(x-4)-5 x=-5$ with -1 .

$$
\begin{aligned}
& (-1-4)-5(-1)=-5 \\
& 2(-5)+5=-5 \\
& -10+5=-5 \\
& -5=-5
\end{aligned}
$$

This is a true statement, therefore the proposed solution $x=-1$ is an actual solution.

Example 5: Solve a Linear Equation (1 of 2)

Solve the linear equation $4(2 x+1)=3(2 x-5)+29$.
Note that this equation is not in general form! We will first simplify the expressions on each side of the equal sign using the Distributive Property.

$$
\begin{array}{rlrl}
8 x+4 & =6 x-15+29 & \\
8 x+4 & =6 x+14 & & \text { Combined like terms on the right. } \\
2 x+4 & =14 & & \begin{array}{l}
\text { Subtracted } 6 x \text { from both sides (Subtraction Axiom) and } \\
\text { combined like terms. }
\end{array} \\
2 x & =10 & \begin{array}{l}
\text { Subtracted 4 from both sides (Subtraction Axiom) and } \\
\text { combined like terms. }
\end{array}
\end{array}
$$

Example 5: Solve a Linear Equation (2 of 2)

Next, we "isolate" the variable. That is, let's divide both sides of the equal sign by 2 (which is the coefficient of the variable).
$\frac{2 x}{2}=\frac{10}{2}$ and $x=5$ which is the proposed solution
Given $x=5$, we now replace x in the original equation $4(2 x+1)=3(2 x-5)+29$ with 5 .
$4(2(5)+1)=3(2(5)-5)+29$
$4(11)=3(5)+29$
$44=15+29$
$44=44$

This is a true statement, therefore the proposed solution $x=5$ is an actual solution.

Example 6: Solve a Linear Equations

Solve the linear equation $2 x+6=2(x+4)$.
Note that this equation is not in general form! We will first simplify the expression on the right side of the equal sign using the Distributive Property.
$2 x+6=2 x+8$
$6=8$
Subtracted $2 x$ from both sides (Subtraction Axiom).
Note, when we tried to solve for x, we ended up with $6=8$, which is a FALSE statement.

In mathematics this means that the given equation has NO SOLUTION.

Example 7: Solve a Linear Equation

Solve the linear equation $4 x+6=6(x+1)-2 x$.
Note that this equation is not in general form! We will first simplify the expression on the right side of the equal sign using the Distributive Property.

$$
\begin{aligned}
& 4 x+6=6 x+6-2 x \\
& 4 x+6=4 x+6 \\
& 6=6
\end{aligned}
$$

$$
4 x+6=4 x+6 \quad \text { Combined like terms (simplified). }
$$

$$
\text { Subtracted } 4 x \text { from both sides (Subtraction Axiom). }
$$

Note, when we tried to solve for x, we ended up with $6=6$, which is a TRUE statement.

In mathematics this means that the given equation has INFINITELY MANY SOLUTIONS.

Example 8: Solve a Linear Equation (1 of 2)

Solve the linear equation $\frac{\mathbf{3}}{\mathbf{4}}-\boldsymbol{x}=\frac{7}{\mathbf{8}}$.
Let's find a number divisible by all denominators in the equation. Please understand that we can always find such a number by calculating the product of all denominators. In our case, that would be $4(8)=32$.

However, you might notice that 8 is also a number divisible by 4 and 8 . It certainly is smaller than 32 and therefore easier to work with. Subsequently, let's use 8 and multiply both sides of the equal sign by it.

$$
\begin{aligned}
& 8\left(\frac{3}{4}-x\right)=8\left(\frac{7}{8}\right) \\
& 8\left(\frac{3}{4}\right)-8 x=8\left(\frac{7}{8}\right)
\end{aligned}
$$

Example 8: Solve a Linear Equation (2 of 2)

After some canceling, we get $6-8 x=7$ and $-8 x=1$.
All that's left to do is divide both sides of the equal sign by -8 to get

$$
x=-\frac{1}{8}
$$

If we wish, we could carry out a check to prove to ourselves that this is indeed the actual solution.

Example 9: Solve a Linear Equation (1 of 2)

Solve the linear equation $\frac{x-3}{7}=\frac{7}{8}$ using Cross-Multiplication.
Let's make a cross over the equal sign as follows to help us remember CrossMultiplication.

$$
\frac{x-3}{7}<\frac{7}{8}
$$

We can now state $8(x-3)=7(7)$.
Next, we must use the Distributive Property to get $8 \mathbf{x - 2 4}=49$.
Using the Addition Axiom, we find $\mathbf{8 x}=\mathbf{7 3}$.

Example 9: Solve a Linear Equation (2 of 2)

Next, we "isolate" the variable. That is, let's divide both sides of the equal sign by 8 (which is the coefficient of the variable).

We get $\boldsymbol{x}=\frac{73}{\mathbf{8}}$.
If we wish, we could carry out a check to prove to ourselves that this is indeed the actual solution.

Now, should we change the improper fraction to a mixed number? Only if you are asked to do so. Otherwise, leave it alone.

