Examples
 Inverses of Functions

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define one-to-one functions.
2. Find inverse functions.
3. Verify inverses.

Example 1: Find the Inverse of a Function (1 of 2)

The function $f(x)=3 x-1$ is one-to-one. It has a domain and range consisting of all real numbers. Find its inverse function.

Note that $f(x)$ can be replaced with y to get $y=3 x-1$.
Now we interchange x and y to get $x=3 y-1$.

Then, we solve for y in terms of x as follows:

$$
\begin{aligned}
& x+1=3 v \\
& \quad y=\frac{x+1}{3} \\
& \text { and }
\end{aligned}
$$

This is a linear function, and all linear functions are one-to-one! Imagine horizontal lines crossing any increasing or decreasing function. They only intersect once, right?

Example 1: Find the Inverse of a Function (2 of 2)

In the final step, we replace y with function notation. We can use any function name or \boldsymbol{f}^{-1}.

Let's write $f^{-1}(x)=\frac{x+1}{3}$.

Example 2: Find the Inverse of a Function (1 of 2$)$

The function $f(x)=\sqrt[3]{x-5}$ is one-to-one. It has a domain and range consisting of all real numbers. Find its inverse function.

Note that $f(x)$ can be replaced with y to get $y=\sqrt[3]{x-5}$.
Now we interchange x and y to get $x=\sqrt[3]{y-5}$.

Then, we solve for y in terms of x. We are dealing with a radical of index 3. therefore, we will raise both sides of the equation to the $3^{\text {rd }}$ power. This eliminates the radical -.....上ー1
$x^{3}=(\sqrt[3]{y-5})^{3}$
then $x^{3}=y-5$
and $y=x^{3}+5$

Example 2: Find the Inverse of a Function (2 of 2)

The function $y=x^{3}+5$ is one-to-one. It is a transformation of $y=x^{3}$ whose graphs are similar to . Imagine horizontal lines crossing such graphs. They only intersect once, right?

In the final step, we replace y with function notation. We can use any function name or \boldsymbol{f}^{-1}.

Let's write $\boldsymbol{f}^{-1}(x)=x^{3}+5$.

Example 3: Find the Inverse of a Function (1 of 3)

The function $f(x)=\sqrt{x-2}$ is one-to-one. It has a domain of $\{x \mid x \geq 2\}$ and a range of $\{y \mid y \geq 0\}$. Find its inverse function.

Note that $f(x)$ can be replaced with y to get $y=\sqrt{x-2}$. Now we interchange x and y to get $x=\sqrt{y-2}$.

Then, we solve for y in terms of x. We are dealing with a radical of index 2 . therefore, we will raise both sides of the equation to the $\mathbf{2}^{\text {nd }}$ power. This eliminates the radical symbol.

$$
\begin{aligned}
& x^{2}=(\sqrt{y-2})^{2} \\
& \text { then } x^{2}=y-2 \\
& \text { and } y=x^{2}+2
\end{aligned}
$$

Example 3: Find the Inverse of a Function (2 of 3)

The function $y=x^{2}+2$ is NOT one-to-one. It is a transformation of $y=x^{2}$ whose graphs are similar to \checkmark. Imagine horizontal lines crossing such graphs. There are infinitely many that intersect more than once, right?

Since the inverse of a one-to-one function must also be one-to-one, we need to make $y=x^{2}+2$ one-to-one by restricting its domain.

We were told that the range of $f(x)=\sqrt{x-2}$ is $\{y \mid y \geq 0\}$. We also know that this becomes the domain of the inverse function, namely $\{x \mid x \geq 0\}$.

We can now state that the inverse of $f(x)=\sqrt{x-2}$ is $y=x^{2}+2$ with restricted domain $\{x \mid x \geq 0\}$.

Example 3: Find the Inverse of a Function (3 of 3)

Below is the graph of the inverse of $f(x)=\sqrt{x-2}$. Namely, $y=x^{2}+2$ with restricted domain $\{x \mid x \geq 0\}$.

In the final step, we replace y with function notation. Let's use the function name \boldsymbol{g} to get $\boldsymbol{g}(x)=x^{2}+2$ with restricted domain $\{x \mid x \geq 0\}$.

Example 4: Verify Inverse Functions (1 of 2)

Show that the following functions are inverses:

$$
f(x)=\sqrt{x-9}+7 \text { and } g(x)=x^{2}-14 x+58,\{x \mid x \geq 7\}
$$

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f\left(x^{2}-14 x+58\right) \\
& =\sqrt{\left(x^{2}-14 x+58\right)-9}+7 \\
& =\sqrt{x^{2}-14 x+49}+7 \\
& =\sqrt{(x-7)^{2}}+7 \\
& =(x-7)+7 \\
& =x
\end{aligned}
$$

Example 4: Verify Inverse Functions (2 of 2)

$$
\begin{aligned}
(g \circ f)(x)=g(f(x))= & g(\sqrt{x-9}+7) \\
& =(\sqrt{x-9}+7)^{2}-14(\sqrt{x-9}+7)+58
\end{aligned}
$$

Please note that $(\sqrt{x-9}+7)^{2}=(\sqrt{x-9}+7)(\sqrt{x-9}+7)$ and we will FOIL to simplify.

$$
(\sqrt{x-9})^{2}+7 \sqrt{x-9}+7 \sqrt{x-9}+7^{2}=x-9+14 \sqrt{x-9}+49
$$

We will now continue the simplification process:

$$
\begin{aligned}
& =x-9+14 \sqrt{x-9}+49-14(\sqrt{x-9}+7)+58 \\
& =x-9+14 \sqrt{x-9}+49-14 \sqrt{x-9}-98+58 \\
& =x
\end{aligned}
$$

Since both $(f \circ g)$ and $(g \circ f)$ equal x, we just verified that the functions f and g are inverses.

Example 5: Verify Inverse Functions

Show that each function is the inverse of the other:
$f(x)=4 x-7 \quad$ and $\quad g(x)=\frac{x+7}{4}$.
$(f \circ g)(x)=f(g(x))=f\left(\frac{x+7}{4}\right)=4\left(\frac{x+7}{4}\right)-7=x+7-7=x$
$(g \circ f)(x)=g(f(x))=g(4 x-7)=\frac{4 x-7+7}{4}=\frac{4 x}{4}=x$

Since $(f \circ g)(x)=(g \circ f)(x)=x$, we just verified that f and g are inverses of each other.

