Examples Inverses of Functions

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define one-to-one functions.
- 2. Find inverse functions.
- 3. Verify inverses.

Example 1: Find the Inverse of a Function (1 of 2)

The function f(x) = 3x - 1 is one-to-one. It has a domain and range consisting of *all real numbers*. Find its inverse function.

Note that f(x) can be replaced with y to get y = 3x - 1.

Now we interchange x and y to get x = 3y - 1.

Then, we solve for y in terms of x as follows:

$$x + 1 = 3v$$
$$y = \frac{x+1}{3}$$
and

This is a linear function, and all linear functions are one-to-one! Imagine horizontal lines crossing any increasing or decreasing function. They only intersect once, right?

Example 1: Find the Inverse of a Function (2 of 2)

In the final step, we replace y with function notation. We can use any function name or f^{-1} .

Let's write
$$f^{-1}(x) = \frac{x+1}{3}$$
.

Example 2: Find the Inverse of a Function (1 of 2)

The function $f(x) = \sqrt[3]{x-5}$ is one-to-one. It has a domain and range consisting of *all real numbers*. Find its inverse function.

Note that f(x) can be replaced with y to get $y = \sqrt[3]{x-5}$. Now we interchange x and y to get $x = \sqrt[3]{y-5}$.

Then, we solve for y in terms of x. We are dealing with a radical of **index 3**. therefore, we will raise both sides of the equation to the 3^{rd} **power**. This eliminates the radical

$$x^3 = (\sqrt[3]{y-5})^3$$

then
$$x^3 = y - 5$$

and $y = x^3 + 5$

Example 2: Find the Inverse of a Function (2 of 2)

The function $y = x^3 + 5$ is one-to-one. It is a transformation of $y = x^3$ whose graphs are similar to \nearrow . Imagine horizontal lines crossing such graphs. They only intersect once, right?

In the final step, we replace y with function notation. We can use any function name or f^{-1} .

Let's write $f^{-1}(x) = x^3 + 5$.

Example 3: Find the Inverse of a Function (1 of 3)

The function $f(x) = \sqrt{x-2}$ is one-to-one. It has a domain of $\{x \mid x \ge 2\}$ and a range of $\{y \mid y \ge 0\}$. Find its inverse function.

Note that f(x) can be replaced with y to get $y = \sqrt{x-2}$. Now we interchange x and y to get $x = \sqrt{y-2}$.

Then, we solve for y in terms of x. We are dealing with a radical of **index 2**. therefore, we will raise both sides of the equation to the 2^{nd} **power**. This eliminates the radical symbol.

$$x^2 = \left(\sqrt{y-2}\right)^2$$

then
$$x^2 = y - 2$$

and $y = x^2 + 2$

Example 3: Find the Inverse of a Function (2 of 3)

The function $y = x^2 + 2$ is NOT one-to-one. It is a transformation of $y = x^2$ whose graphs are similar to \checkmark . Imagine horizontal lines crossing such graphs. There are infinitely many that intersect more than once, right?

Since the inverse of a one-to-one function must also be one-to-one, we need to make $y = x^2 + 2$ one-to-one by restricting its domain.

We were told that the range of $f(x) = \sqrt{x-2}$ is $\{y \mid y \ge 0\}$. We also know that this becomes the domain of the inverse function, namely $\{x \mid x \ge 0\}$.

We can now state that the inverse of $f(x) = \sqrt{x-2}$ is $y = x^2 + 2$ with restricted domain $\{x \mid x \ge 0\}$.

Example 3: Find the Inverse of a Function (3 of 3)

Below is the graph of the inverse of $f(x) = \sqrt{x-2}$. Namely, $y = x^2 + 2$ with restricted domain $\{x \mid x \ge 0\}$.

In the final step, we replace y with function notation. Let's use the function name g to get $g(x) = x^2 + 2$ with restricted domain $\{x \mid x \ge 0\}$.

Example 4: Verify Inverse Functions (1 of 2)

Show that the following functions are inverses:

$$f(x) = \sqrt{x-9} + 7 \text{ and } g(x) = x^2 - 14x + 58, \{x \mid x \ge 7\}.$$

$$(f \circ g)(x) = f(g(x)) = f(x^2 - 14x + 58)$$

$$= \sqrt{(x^2 - 14x + 58) - 9} + 7$$

$$= \sqrt{x^2 - 14x + 49} + 7$$

$$= \sqrt{(x-7)^2} + 7$$

$$= (x-7) + 7$$

$$= x$$

Example 4: Verify Inverse Functions (2 of 2)

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x-9} + 7)$$
$$= (\sqrt{x-9} + 7)^2 - 14(\sqrt{x-9} + 7) + 58$$

Please note that $(\sqrt{x-9} + 7)^2 = (\sqrt{x-9} + 7)(\sqrt{x-9} + 7)$ and we will FOIL to simplify.

$$(\sqrt{x-9})^2 + 7\sqrt{x-9} + 7\sqrt{x-9} + 7^2 = x-9 + 14\sqrt{x-9} + 49$$

We will now continue the simplification process:

$$= x-9+14\sqrt{x-9}+49-14(\sqrt{x-9}+7)+58$$
$$= x-9+14\sqrt{x-9}+49-14\sqrt{x-9}-98+58$$
$$= x$$

Since both $(f \circ g)$ and $(g \circ f)$ equal x, we just verified that the functions f and g are inverses.

Example 5: Verify Inverse Functions

Show that each function is the inverse of the other:

$$f(x) = 4x - 7$$
 and $g(x) = \frac{x + 7}{4}$.
 $(f \circ g)(x) = f(g(x)) = f\left(\frac{x + 7}{4}\right) = 4\left(\frac{x + 7}{4}\right) - 7 = x + 7 - 7 = x$

$$(g \circ f)(x) = g(f(x)) = g(4x-7) = \frac{4x-7+7}{4} = \frac{4x}{4} = x$$

Since $(f \circ g)(x) = (g \circ f)(x) = x$, we just verified that f and g are inverses of each other.