Examples

Geometric Sequences and Series
Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Memorize the definition of a geometric sequence and find its common ratio.
2. Find the value of a term of a geometric sequence.
3. Memorize the definition of a finite geometric series and evaluate its sum.
4. Evaluate the sum of an infinite geometric series.

Example 1: Find the Common Ratio of a Geometric Sequence

a. Given the geometric sequence $-12,24,-48,96,-192,384, \ldots$ find the common ratio r.

Dividing the second term by the first term: $r=24 \div(-12)=-2$
We check this by observing that every term after the first one is a multiple of -2 of the preceding term.
b. Given the geometric sequence $1,5,25,125,625,3125, \ldots$ find the common ratio r.

Dividing the second term by the first term: $r=5 \div 1=5$
We check this by observing that every term after the first one is a multiple of 5 of the preceding term.

Example 2: Find the Value of a Term of a Geometric

Sequence

Find the value of the $6^{\text {th }}$ term of $\frac{\frac{1}{2}}{2}$ the geometric sequence whose first term a_{1} is 12 and whose common ratio r is .

To find the $6^{\text {th }}$ term a_{6}, we will write out the previous 5 terms first.
$a_{1}=12$

$$
a_{4}=3 \cdot \frac{1}{2}=\frac{3}{2}
$$

$a_{2}=12 \cdot \frac{1}{2}=6$
$a_{5}=\frac{3}{2} \cdot \frac{1}{2}=\frac{3}{4}$
$a_{3}=6 \cdot \frac{1}{2}=3$
$a_{6}=\frac{3}{4} \cdot \frac{1}{2}=\frac{3}{8}$
This is the value of the $6^{\text {th }}$ term.

Example 3: Find the Value of a Term of a Geometric Sequence

In Example 2, we found the value of the $6^{\text {th }}$ term of a geometric sequence by writing out the $1^{\text {st }}$ through the $6^{\text {th }}$ term.

Now, we will use the formula $a_{n}=a_{1} r^{n-1}$, where $a_{1}=12, n=6$, and $r=\frac{1}{2}$ to find a_{6}.

$$
\begin{aligned}
a_{6}=12\left(\frac{1}{2}\right)^{6-1} & =12\left(\frac{1}{2}\right)^{5} \\
& =12\left(\frac{1}{32}\right) \\
& =\frac{12}{32} \\
& =\frac{3}{8}
\end{aligned}
$$

We also find that the value of the $6^{\text {th }}$ term is $\frac{3}{8}$.

Example 4: Find the Value of a Term of a Geometric

 SequenceFind the value of the $10^{\text {th }}$ term of the geometric sequence whose first term a_{1} is 3 and whose common ratio r is -2 .

We will use the formula $a_{n}=a_{1} r^{n-1}$ instead of writing out the previous 9 terms. We let $a_{1}=2, n=10$, and $r=-2$ to find a_{10}.

$$
\begin{aligned}
a_{10} & =3(-2)^{10-1} \\
& =3(-2)^{9} \\
& =3(-512) \\
& =-1536
\end{aligned}
$$

The value of the $10^{\text {th }}$ term is -1536 .

Example 5: Evaluate the Sum of a Geometric Series (1 of 2)

Evaluate the sum of the geometric series $\sum_{k=1}^{25} 6\left(2^{k}\right)$.
This series has lots of terms. Instead of writing out and then adding them, we will use the summation formula $s_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$.
Let's find the values we need for this formula.

- The number of terms n in the sum is 20 .
- We find the first term a_{1} by evaluating the series for $k=1$. Specifically, $a_{1}=6\left(2^{1}\right)=12$
- We also need r. We find the first and second terms of the geometric series, 12 and 24 , then we divide 24 by 12 to find $r=2$.

Example 5: Evaluate the Sum of a Geometric Series (2 of 2)

Finally, given $a_{1}=12$ and $r=2$, we can find S_{25}. Specifically,

$$
\begin{aligned}
S_{25} & =\frac{12\left(1-2^{25}\right)}{1-2} \\
& =\frac{12(1-33554432)}{-1} \\
& =\frac{12(-333554431)}{-1} \\
& =402653172
\end{aligned}
$$

Example 6: Evaluate the Sum of a Geometric Series (1 of 2)

Find the sum of the first 9 terms of the geometric series $2+(-6)+18+(-54)+\ldots$. We will use the summation formula $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$. Let's find the values we need for it.

- The number of terms n in the sum is 9 .
- We know that the first term a_{1} is 2 .
- We also need r. The first and second terms of the geometric series are 2 and -6 respectively, then we divide -6 by 2 to find $r=-3$.

Example 6: Evaluate the Sum of a Geometric Series (2 of 2)

Finally, given $a_{1}=2$ and $r=-3$, we can find S_{9}. Specifically,

$$
\begin{aligned}
S_{9} & =\frac{2\left(1-(-3)^{9}\right)}{1-(-3)} \\
& =\frac{2(1-(-19683))}{4} \\
& =\frac{2(19684)}{4} \\
& =9842
\end{aligned}
$$

Example 7: Evaluate the Sum of a Geometric Series (1 of 2)

Find the sum of the first 10 terms of the geometric series $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots$. Round the answer to 9 decimal places.

We will use the summation formula $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$. Let's find the values we need for it.

- The number of terms n in the sum is 10 .
- We know that the first term a_{1} is 1 .
- We also need r. The first and second terms of the geometric series are 1 and $\frac{1}{4}$ respectively, then we divide $\frac{1}{4}$ by 1 to find $r=\frac{1}{4}$.

Example 7: Evaluate the Sum of a Geometric Series (2 of 2)

Finally, given $a_{1}=1$ and $r=\frac{1}{4}$, we can find S_{10}. Specifically,

$$
s_{10}=\frac{1\left(1-\left(\frac{1}{4}\right)^{10}\right)}{1-\frac{1}{4}}=\frac{\left(1-\left(\frac{1}{4}\right)^{10}\right)}{\frac{3}{4}} \approx 1.333332062 \ldots
$$

Example 8: Evaluate the Sum of an Infinite Geometric Series

 (1 of 2)Let's use the geometric series $1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\ldots$ from Example 7 again. But this time we will try to find the sum of an infinite number of terms.

Since $r=\frac{1}{4}$ lies between -1 and 1 , we know that the sum of an infinite number of terms can indeed be be found!

Therefore, we will use the special Summation Formula $\boldsymbol{s}=\frac{\boldsymbol{a}_{1}}{\boldsymbol{1 - r}}$.

Example 8: Evaluate the Sum of an Infinite Geometric Series (2 of 2)

Given $a_{1}=1$ and $r=\frac{1}{4}$, we get

$$
\begin{aligned}
S & =\frac{1}{1-\frac{1}{4}} \\
& =\frac{1}{\frac{3}{4}} \\
& =1 \cdot \frac{4}{3} \\
& =\frac{4}{3} \cong 1.333333333 \ldots
\end{aligned}
$$

Notice that compared to Example 7, the sum of 10 terms and that of an infinite number of terms did not change all that much.

