Examples
 Operations on Functions

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Add, subtract, multiply and divide functions.
2. Compose functions.

Example 1: Operations on Functions (1 of 2)
Let $f(x)=-5 x$ and $g(x)=2 x-1$. Find the functions $f+g, f-g, f g$, and $\frac{f}{g}$.

$$
\begin{aligned}
(f+g)(x) & =(-5 x)+(2 x-1) \\
& =-5 x+2 x-1 \\
& =-3 x-6
\end{aligned}
$$

$$
\begin{aligned}
(f-g)(x) & =(-5 x)-(2 x-1) \\
& =-5 x-2 x+1 \\
& =-7 x+1
\end{aligned}
$$

Example 1: Operations on Functions (2 of 2)
Let $f(x)=-5 x$ and $g(x)=2 x-1$. Find the functions $f+g, f-g$, $f g$, and $\frac{f}{g}$.

$$
(f g)(x)=(-5 x)(2 x-1)
$$

$$
=-10 x^{2}+5 x \quad \text { (here we used the Distributive Property and the power rule of exponents!) }
$$

$\left(\frac{f}{g}\right)(x)=\frac{-5 x}{2 x-1} \quad$ where the denominator $2 x-1$ cannot be equal to 0 !

Example 2: Operations on Functions (1 of 2)
Let $h(x)=x^{2}+3$ and $k(x)=2 x-1$. Find the functions $h+k, h-k, h k$, and $\frac{h}{\boldsymbol{k}}$.

$$
\begin{aligned}
(h+k)(x) & =\left(x^{2}+3\right)+(2 x-1) \\
& =x^{2}+3+2 x-1 \\
& =x^{2}+2 x+2 \\
(h-k)(x) & =\left(x^{2}+3\right)-(2 x-1) \\
& =x^{2}+3-2 x+1 \\
& =x^{2}-2 x+4
\end{aligned}
$$

Please note that in mathematics terms are ALWAYS displayed in descending order of their exponent!

Example 2: Operations on Functions (2 of 2)
$(h k)(x)=\left(x^{2}+3\right)(2 x-1)$
Using FOIL, we get

$$
\begin{aligned}
(h k)(x) & =\left(x^{2}+3\right)(2 x-1)=x^{2}(2 x)+x^{2}(-1)+3(2 x)+3(-1) \\
& =2 x^{3}-x^{2}+6 x-3
\end{aligned}
$$

$\left(\frac{h}{k}\right)(x)=\frac{x^{2}+3}{2 x-1} \quad$ where the denominator $2 x-1$ cannot be equal to 0 !

Example 3: Compose Function

Given $\mathrm{f}(x)=x-5$ and $g(x)=2 x-3$, find $\mathbf{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \mathbf{f}$.
We find $\mathbf{f} \circ \boldsymbol{g}$ by replacing every occurrence of x in the function f with the function g as follows:

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f(2 x-3) \\
& =(2 x-3)-5 \\
& =2 x-8
\end{aligned}
$$

This is the function f where x was replaced by $2 x-3$.

We find $\boldsymbol{g} \circ \mathbf{f}$ by replacing every occurrence of x in the function \boldsymbol{g} with the function f as follows"

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =g(x-5) \\
& =2(x-5)-3 \\
& =2 x-10-3 \\
& =2 x-13
\end{aligned}
$$

Please note that the results of $\mathbf{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \boldsymbol{f}$ are not the same!

Example 4: Compose Function

Given $f(x)=x+4$ and $g(x)=x-1$, find $f \circ g$ and $g \circ f$.

$$
\begin{aligned}
(f \circ g)(x)=f(g(x)) & =f(x-1) \\
& =(x-1)+4 \text { This is the function } f \text { where } x \text { was replaced by } x-1 . \\
& =x+3 \\
(g \circ f)(x)=g(f(x)) & =g(x+4) \\
& =(x+4)-1 \quad \text { This is the function } g \text { where } x \text { was replaced by } x+4 . \\
& =x+3
\end{aligned}
$$

In this example, the results of $\mathbf{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \mathbf{f}$ are the same.

Example 5: Compose Functions

Given $f(x)=\sqrt{x}$ and $g(x)=x-3$, find $\mathbf{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \mathbf{f}$.
We find $\mathbf{f} \circ \boldsymbol{g}$ by replacing every occurrence of x in the function f with the function g as follows:

$$
(f \circ g)(x)=f(g(x))=f(x-3)
$$

$$
=\sqrt{x-3} \quad \text { This is the function } f \text { where } x \text { was replaced by } x-3
$$

We find $\boldsymbol{g} \circ \boldsymbol{f}$ by replacing every occurrence of x in the function g with the function f as follows:

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =g(\sqrt{x}) \\
& =\sqrt{x}-3 \quad \text { This is the function } g \text { where } x \text { was replaced by } \sqrt{x} .
\end{aligned}
$$

Please note that the results of $\mathbf{f} \circ \boldsymbol{g}$ and $\boldsymbol{g} \circ \mathbf{f}$ are not the same!

