Examples Exponential Functions

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Memorize the definition of the common exponential function.
- 2. Memorize characteristics of the graphs of exponential functions.
- Apply transformations to the common exponential function.
 Graph the common exponential function and its transformations by hand.

Example 1: Apply Transformations to Common Exponential Functions (1 of 2)

Starting with the graph of $f(x) = 2^x$, write the equation of the graph that results from the following. Include the equation of the horizontal asymptote.

(1) a vertical shift up 3 units

 $y = 2^{x} + 3$

The equation of the horizontal asymptote is now y = 3.

Remember, a vertical shift affects the horizontal asymptote!

(2) a vertical shift down 3 units

 $y = 2^{x} - 3$

The equation of the horizontal asymptote is now y = -3.

Example 1: Apply Transformations to Common Exponential Functions (2 of 2)

(3) a horizontal shift to the right 3 units

 $y=2^{x-3}$

The equation of the horizontal asymptote is still y = 0.

(4) a horizontal shift to the left 3 units

 $y=2^{x+3}$

The equation of the horizontal asymptote is still y = 0.

Example 2: Apply Transformations to Common Exponential Functions (1 of 2)

Starting with the graph of $f(x) = e^x$, write the equation of the graph that results from the following. Include the equation of the horizontal asymptote.

(1) a reflection across the *x*-axis

y = - *e*^{*x*}

The equation of the horizontal asymptote is still y = 0.

(2) a reflection across the y-axis

 $y = e^{-x}$

The equation of the horizontal asymptote is still y = 0.

Example 2: Apply Transformations to Common Exponential Functions (2 of 2)

(3) a reflection across the x- and y-axis

 $y = -e^{-x}$

The equation of the horizontal asymptote is still y = 0.

(4) a vertical shift up 1 unit and a horizontal shift to the right 2 units $y = e^{x-2} + 1$

The equation of the horizontal asymptote is now y = 1.

Example 3: Apply Transformations to Common Exponential Functions

Starting with the graph of $f(x) = 3^x$, write the equation of the graph that results from the following. Include the equation of the horizontal asymptote.

(1) a vertical shift up 2 units and a horizontal shift to the left 1 unit
 y = 3^{x+1} + 2
 The equation of the horizontal asymptote is now y = 2.
 Remember, a vertical shift affects the horizontal asymptote!

(2) a vertical shift down 2 units and a horizontal shift to the right 1 unit $y = 3^{x-1} - 2$

The equation of the horizontal asymptote is now y = -2.

Example 4: Graph a Common Exponential Function by Hand (1 of 3)

Graph the function $f(x) = 2^x$ by hand.

1. Equation of the horizontal asymptote:

Since the function is of the form $y = b^x$, where b = 2 and there are no transformations, we can conclude that the equation of the *horizontal* asymptote is y = 0, which is the x-axis.

2. Point associated with the *y*-intercept (when *x* = 0):

 $f(0) = 2^0 = 1$ The *y*-intercept is at (0, 1). Example 4: Graph a Common Exponential Function by Hand (2 of 3)

3. Find additional points to either side of the *y*-intercept:

How about *x* = − 3, − 2, − 1, 1, 2, and 3?

Using $f(x) = 2^x$, we set up a table of coordinates and then plot these points.

X	$f(x)=2^x$
- 3	$2^{-3} = 0.125$
-2	2 ⁻² = 0.25
-1	2 ⁻¹ = 0.5
1	2 ¹ = 2
2	2 ² = 4
3	2 ³ = 8

Example 4: Graph a Common Exponential Function by Hand (3 of 3)

4. Connect all points found in the previous steps keeping in mind the shape of the graph of a common exponential function:

Since the horizontal asymptote is the *x*-axis, we will not graph it as a dashed line.

Example 5: Graph a Transformation of a Common Exponential Function by Hand (1 of 3)

Graph the function $f(x) = 2^{x+1} - 3$ by hand.

1. Equation of the horizontal asymptote:

The function is a transformation of $y = 2^x$ whose graph has a *horizontal* asymptote at y = 0.

We notice a horizontal shift 1 unit to the left and a vertical shift 3 units down. We learned that vertical shifts affect *horizontal asymptotes*. Here, it will move the *horizontal asymptote* to y = -3.

2. Point associated with the *y*-intercept (when x = 0):

 $f(0) = 2^{0+1} - 3 = -1.$

The y-intercept is at (0, -1).

Example 5: Graph a Transformation of a Common Exponential Function by Hand (1 of 3)

3. Find additional points to either side of the *y*-intercept:

How about *x* = − 3, − 2, − 1, 1, and 2?

Using $f(x) = 2^{x+1} - 3$, we set up a table of coordinates and then plot these points.

x	$f(x) = 2^{x+1} - 3$
- 3	$2^{-3+1} - 3 = -2.75$
- 2	$2^{-2+1} - 3 = -2.5$
-1	$2^{-1+1} - 3 = -2$
1	$2^{1+1} - 3 = 1$
2	$2^{2+1} - 3 = 5$

Example 5: Graph a Transformation of a Common Exponential Function by Hand (1 of 3)

4. Connect all points found in the previous steps keeping in mind the shape of the graph of a common exponential function:

Note: The *horizontal asymptote* is drawn as a dashed line when we graph exponential functions by hand!