Examples Arithmetic Sequences and Series

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Memorize the definition of an arithmetic sequence and find the common difference.
- 2. Find the value of a term of an arithmetic sequence.
- 3. Memorize the definition of a finite arithmetic series and evaluate its sum.

Example 1: Find the Common Difference of an Arithmetic Sequence

a. Given the arithmetic sequence 3, 5, 7, 9, 11, 13, ... find the common difference *d*.

Subtracting the first term from the second term: d = 5 - 3 = 2

We check this by observing that every term after the first one is 2 more than the preceding term.

b. Given the arithmetic sequence 70, 40, 10, −20, −50, ... find the common difference *d*.

Subtracting the first term from the second term: d = 40 - 70 = -30

We check this by observing that every term after the first one is 30 less than the preceding term.

Example 2: Find the Value of a Term of an Arithmetic Sequence

Find the value of the 6^{th} term of the arithmetic sequence whose first term is 12 and whose common difference *d* is 4.

To find the 6^{th} term a_6 , we will write out the previous 5 terms first.

$$a_1 = 12$$
 $a_4 = 20 + 4 = 24$

$$a_2 = 12 + 4 = 16$$
 $a_5 = 24 + 4 = 28$

 $a_3 = 16 + 4 = 20$ $a_6 = 28 + 4 = 32$ This is the value of the 6th term.

Example 3: Find the Value of a Term of an Arithmetic Sequence

In Example 2, we found the value of the 6th term of an arithmetic sequence by writing out the 1st through the 6th term.

Now, we will use the formula $a_n = a_1 + (n - 1)d$ where $a_1 = 12$, n = 6, and d = 4 to find a_6 .

 $a_6 = 12 + (6 - 1)(4)$ = 12 + (5)(4) = 12 + (5)(4) = 32

We also find that the value of the 6th term is 32.

Example 4: Find the Value of a Term of an Arithmetic Sequence

Find the value of the 90th term of the arithmetic sequence whose first term a_1 is 6 and whose common difference d is -5.

We will use the formula $a_n = a_1 + (n - 1)d$ instead of writing out the previous 89 terms. We let $a_1 = 6$, n = 9, and d = -5 to find a_{90} .

$$a_{90} = 6 + (90 - 1)(-5)$$

= 6 + (89)(-5)
= 6 - 445
= - 439

The value of the 90^{th} term is -439.

Example 5: Evaluate the Sum of an Arithmetic Series (1 of 2)

Evaluate the sum of the arithmetic series
$$\sum_{k=1}^{25} (5k-9)$$
.

This series has lots of terms. Instead of writing out all terms and then adding them, we will use the Summation Formula $S_n = \frac{n}{2}(a_1 + a_n)$.

Let's find the values we need for this formula.

- The number of terms *n* in the sum is 25.
- We find the first term a_1 by evaluating (5k 9) for k = 1Specifically, $a_1 = 5(1) - 9 = -4$
- We find the last term a_{25} by evaluating (5k 9) for k = 25. Specifically, $a_{25} = 5(25) - 9 = 116$

Example 5: Evaluate the Sum of an Arithmetic Series (2 of 2)

Finally, given $a_1 = -4$ and $a_{25} = 116$, we can find S_{25} . Specifically,

$$S_{25} = \frac{25}{2}(-4 + 116)$$
$$= \frac{25}{2}(112)$$
$$= 1400$$

Example 6: Evaluate the Sum of an Arithmetic Series (1 of 2)

Find the sum of the first 15 terms of the arithmetic series 3 + 6 + 9 + 12 + ...

We will use the Summation Formula $S_n = \frac{n}{2}(a_1 + a_n)$. Let's find the values we need for it.

- The number of terms *n* in the sum is 15.
- We know that the first term a_1 is 3.
- We find the last term a_{15} by using the formula $a_n = a_1 + (n-1)d$.

However, first we need to find the common difference d. We study the terms of the arithmetic series and notice that each term is 3 larger than the preceding term. That is, d = 3.

Example 6: Evaluate the Sum of an Arithmetic Series (2 of 2)

Given d = 3, we can now find the value of a_{15} . That is, $a_{15} = 3 + (15 - 1)(3)$ = 3 + 14(3)= 45

Finally, given $a_1 = 3$ and $a_{15} = 45$, we can find S_{15} . Specifically,

$$S_{15} = \frac{15}{2}(3+45)$$
$$= \frac{15}{2}(48)$$
$$= 360$$