Concepts Quadratic Functions — Part 2

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define the Standard Form of a quadratic function.
- Given a quadratic function in standard form, find the coordinates of the vertex and the equation of the axis of symmetry of its graph.
- Graph quadratic functions by hand when given in standard form.

1. The Standard Form of a Quadratic Function (1 of 3)

The general form of a quadratic function is defined to be $f(x) = ax^2 + bx + c$. However, there is also a standard form.

Specifically, the **standard form** of the quadratic function in x is

$$f(x) = a(x - h)^2 + k$$
, where $a \neq 0$

minus is part of the form!

Examples of quadratic functions in standard form:

$$g(x) = 4(x-2)^2 + 1$$
 (standard form with $a = 4$, $h = +2$ and $k = +1$)

$$p(x) = (x - (-3))^2 + (-5)$$
 (standard form with $a = 1$, $h = -3$ and $k = -5$)

Please note that this function is usually written as $p(x) = (x + 3)^2 - 5$. We eliminate the double signs!

The Standard Form of a Quadratic Function (2 of 3)

Example 1:

Change the quadratic function $g(x) = 4(x-2)^2 + 1$ to general form:

Given the standard form of a quadratic function, let's first eliminate the parentheses using FOIL and the we will combine like terms.

$$g(x) = 4(x-2)(x-2) + 1$$

$$= 4(x^2 - 4x + 4) + 1$$

$$= 4x^2 - 16x + 16 + 1$$

$$= 4x^2 - 16x + 17 \text{ which is the general form.}$$

The Standard Form of a Quadratic Function (3 of 3)

Example 2:

Is the graph of the quadratic function $g(x) = 4(x - 2)^2 + 1$ a parabola open up or open down?

Since a = 4 which is greater than 0, the graph of the quadratic function is a parabola open up.

2. Coordinates of the Vertex and Equation of the Axis of Symmetry (1 of 2)

Given the standard form $f(x) = a(x - h)^2 + k$,

- the coordinates of the vertex are (h, k)
- the equation of the axis of symmetry is **x** = **h**

There is a proof in the learning materials showing that (h, k) are indeed the coordinates of the vertex.

It also shows that (h, k) is equivalent to $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.

Coordinates of the Vertex and Equation of the Axis of Symmetry (2 of 2)

Example 3:

Given the quadratic function $p(x) = (x + 3)^2 - 5$, find the coordinates of the vertex of its graph and the equation of the axis of symmetry

This function is almost in *standard form*. If we make a few sign changes, we can use h and k for the coordinates of the vertex.

Specifically, if we let $p(x) = (x - (-3))^2 + (-5)$ we have standard form.

We see that h = -3 and k = -5 and the coordinates of the vertex are (-3, -5).

The equation of the axis of symmetry is x = h. Then x = -3.

3. Graph Quadratic Functions by Hand Given Standard Form

The strategy for graphing quadratic functions in standard form is equal to the strategy for graphing quadratic functions in general form.