Concepts Inverses of Functions

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define one-to-one functions.
2. Find inverse functions.
3. Verify inverses.

NOTE: This lesson contains some examples. You can find more examples in the "Examples" document also located in the appropriate MOM Learning Materials folder.

1. Definition of One-to-One Functions (1 of 2)

One-to-one function are special function where the range values never repeat. For example, the quadratic function $\boldsymbol{g}(\boldsymbol{x})=-(\boldsymbol{x}-1)^{2}+4$ is NOT one-to-one. It has repeating range values! Let's look at its graph.

Note that $x=0$ and $x=2$ are on opposite side of the axis of symmetry and $g(0)=3$ and $g(2)=3$. The range value 3 repeats!

You will find that this happens for all x-values on opposite side of the axis of symmetry. For example, note that $g(-1)=0$ and $g(3)=0$!

Definition of One-to-One Functions (2 of 2)

For example, the domain of $g(x)=-(x-1)^{2}+4$ consists of all real numbers. If we restrict the domain to say $x \leq 1$, then the function becomes one-to-one! Let's look at the graph.

In summary, we can make any function one-to-one by restricting its domain.

Definition of One-to-One Functions (2 of 2)

We can use the Horizontal Line Test to quickly determine if a function is one-toone. Simply graph the function, then draw horizontal lines through the graph. If even just one horizontal line intersects with the graph more than once, the the function is NOT one-to-one.

For example, we can use the Horizontal Line Test to show that the function $\boldsymbol{g}(\boldsymbol{x})=-(\boldsymbol{x}-1)^{2}+4$ is NOT one-to-one since there are many horizontal lines that intersects with the graph more than once.

2. Find the Inverse Function of a Given Function (1 of 3)

Only one-to-one functions have inverse functions! The domain of one is the range of the other and vice versa. The inverses of functions must also be one-to-one.

Strategy for finding inverse functions in x and y :

Step 1 - Exchange the x and y variables.

> Example 1:

The linear function $f(x)=2 x+7$ is one-to-one. Find its inverse function.
Note that $f(x)$ can be replaced with y. We now interchange x and y to get

$$
x=2 y+7
$$

Find the Inverse Function of a Given Function (2 of 3)

Step 2 - Solve for y in terms of x
Example 1 continued:

$$
\begin{aligned}
& x=2 y+7 \\
& x-7=2 y \\
& \text { and } y=\frac{x-7}{2}
\end{aligned}
$$

Step 3 - Replace y with function notation. Since inverse functions must also be oneto one, their domain might have to be restricted!

Example 1 continued:

Here we use will use g for the inverse function to get $g(x)=\frac{x-7}{2}$ which is a linear function that is always one-to-one.

Find the Inverse Function of a Given Function (3 of 3)

Optional Inverse Function Notation

Sometimes the following notation is used to refer to the inverse function, say of a function \boldsymbol{f}.

$$
f^{-1} \text { which is read as "f inverse" }
$$

NOTE: f^{-1} does not mean $\frac{1}{f}$.
Example 1 continued:
Instead of \boldsymbol{g} we can also use \boldsymbol{f}^{-1} to express the inverse function of $f(x)=2 x+7$ in function notation.

That is, $f^{-1}(x)=\frac{x-7}{2}$

3. Verify Inverse Functions (1 of 3)

A function \boldsymbol{f} and its inverse \boldsymbol{g} satisfy the following:
$(f \circ g)(x)=x$
and
$(g \circ f)(x)=x$
Remember that $(f \circ g)$ and $(g \circ f)$ indicate function composition. When \boldsymbol{g} is an inverse of \boldsymbol{f} or vice versa, they both equal x.

Verify Inverse Functions (2 of 3)

Example 2:

Show that the following functions are inverses:

$$
\begin{aligned}
& f(x)=4 x-7 \text { and } g(x)=\frac{x+7}{4} \\
& \begin{aligned}
(f \circ g)(x)=f(g(x)) & =f\left(\frac{x+7}{4}\right) \\
& =4\left(\frac{x+7}{4}\right)-7 \\
& =x+7-7 \\
& =x
\end{aligned}
\end{aligned}
$$

Verify Inverse Functions (3 of 3)

Example 2 continued:

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =g(4 x-7) \\
& =\frac{4 x-7+7}{4} \\
& =\frac{4 x}{4} \\
& =x
\end{aligned}
$$

Since both $(f \circ g)$ and $(g \circ f)$ equal x, we just verified that the functions f and \boldsymbol{g} are inverses.

