Concepts

Geometric Sequences and Series

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Memorize the definition of a geometric sequence and find its common ratio.
2. Find the value of a term of a geometric sequence.
3. Memorize the definition of a finite geometric series and evaluate its sum.
4. Evaluate the sum of an infinite geometric series.

NOTE: This lesson contains some examples. You can find more examples in the "Examples" document also located in the appropriate MOM Learning Materials folder.

1. Definition of a Geometric Sequence (1 of 2)

A geometric sequence is another special sequence in which each term after the first is obtained by multiplying the preceding term by a fixed nonzero constant. A geometric sequence can be finite or infinite.

Example 1:

$3,9,27,81,243, \ldots$ is a geometric sequence because we multiply each preceding term by 3 to get the next term.

Example 2:

$142,146,150,154,158, \ldots$ is NOT a geometric sequence because there is NO fixed number by which we multiply the preceding term to get the next term. Actually, this is an arithmetic sequence!

Definition of a Geometric Sequence (2 of 2)

The fixed number by which we multiply each preceding term to get the next term in a geometric sequence is called the common ratio and is usually denoted by r. It can be positive or negative.

We can find the common ratio by dividing the second term of a geometric sequence by the first term, that is $r=a_{2} \div a_{1}$.

For example, in the geometric sequence $3,9,27,81,243, \ldots$, we would say $r=9 \div 3=3$.

2. The Value of a Term of a Geometric Sequence (1 of 2)

We can find the value of any term a_{n} of a geometric sequence as long as we know the first term a_{1} and common ratio r.
$a_{n}=a_{1} r^{n-1}$ where
a_{n} is the value of the term to be found
a_{1} is the first term of the sequence
n is the position of the unknown term in the sequence (e.g., third term, ninth term)
r is the common ratio

You can find a proof of this formula and those of some other formulas, which we will discuss shortly, in the appropriate weekly tasks folder.

The Value of a Term of a Geometric Sequence (2 of 2)

Example 3:

Find the value of a_{7} in a geometric given that the first term a_{1} equals 5 and the common difference r is -3 .

Please note that a_{7} is the $7^{\text {th }}$ term in the geometric sequence. We will use $a_{n}=a_{1} r^{n-1}$ with $n=7$.

$$
\begin{aligned}
a_{7} & =5(-3)^{7-1} \\
& =5(-3)^{6} \\
& =5(729) \text { (used the calculator!) } \\
& =3645
\end{aligned}
$$

The value of the $7^{\text {th }}$ term is 3645 .
3. The Finite Geometric Series and its Sum (1 of 4)

In general, the geometric series is the sum of the terms of a geometric sequence. Given a finite geometric series, we can find its sum by writing out the terms and then adding them.

Example 4:
Evaluate the sum of a geometric series $\sum_{k=1}^{5} 6\left(2^{k}\right)$.

$$
\begin{aligned}
\sum_{k=1}^{5} 6\left(2^{k}\right) & =6\left(2^{1}\right)+6\left(2^{2}\right)+6\left(2^{3}\right)+6\left(2^{4}\right)+6\left(2^{5}\right) \\
& =6(2)+6(4)+6(8)+6(16)+6(32) \\
& =12+24+48+96+192 \\
& =372
\end{aligned}
$$

The Finite Geometric Series and its Sum (2 of 4)

However, we can also use a Summation Formula instead of writing out the terms of a finite geometric series and then adding them. This formula is necessary when we are asked to add a large number of terms.
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad$ where
S_{n} is the name of the sum
n is the number of terms in the sum
a_{1} is the first term of the sum
r is the common ratio

NOTE: The Summation Formula requires us to start with the first term.

The Finite Geometric Series and its Sum (3 of 4)

Example 5:

Evaluate the sum of a geometric series $\sum_{k=1}^{5} 6\left(2^{k}\right)$ using the Summation Formula $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$.

Let's find the values we need for this formula.

- The number of terms n in the sum is 5 .
- We find the first term a_{1} by evaluating the series for $k=1$. Specifically, $a_{1}=6\left(2^{1}\right)=12$
- We also need r. We find the first and second terms of the geometric series, 12 and 24 , then we divide 24 by 12 to find $r=2$.

The Finite Geometric Series and its Sum (4 of 4)

Example 5 continued:

Finally, given $\mathrm{a}_{1}=12$ and $r=2$, we can find S_{5}. Specifically,

$$
\begin{aligned}
S_{5} & =\frac{12\left(1-2^{5}\right)}{1-2} \\
& =\frac{12(1-32)}{-1} \\
& =\frac{12(-31)}{-1} \\
& =372
\end{aligned}
$$

4. The Infinite Geometric Series and its Sum (1 of 2)

So far, we have only found the sums of series with a finite upper limit. Usually, we call this finding a partial sum.

Sometimes, we can find the sum of an infinite geometric series, that is, a series with an upper limit of infinity. However, this can only be done IF the common ratio r is between -1 and 1 .

We can evaluate the sum of an infinite geometric series using the following formula:
$S=\frac{a_{1}}{1-r}$ where a_{1} is the first term of the sum and r is the common ratio.
NOTE: For reasons that would be explained in a calculus course, we cannot find sums of any infinite arithmetic series.

The Infinite Geometric Series and its Sum (2 of 2)

Example 6:

Evaluate the sum of an infinite geometric series with $a_{1}=5$ and $r=\frac{2}{5}$.
We will use the Summation Formula $S=\frac{a_{1}}{1-r}$. Specifically, we get

$$
\begin{aligned}
S & =\frac{5}{1-\frac{2}{5}} \\
& =\frac{5}{\frac{3}{5}} \\
& =5 \cdot \frac{5}{3} \\
& =\frac{25}{3}
\end{aligned}
$$

