Examples The Slope of a Line

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define and calculate the slope of a line.
2. Identify the slopes of increasing, decreasing, vertical, and horizontal lines.
3. Identify the slope and the y-intercept in the equation of a line.

Example 1: Calculate the Slope of a Line

Find the slope of the line passing through the points $(4,-2)$ and $(-1,5)$.

Here you can say that $(4,-2)$ is $\left(x_{1}, y_{1}\right)$ and $(-1,5)$ is $\left(x_{2}, y_{2}\right)$. However, you can also state that $(4,-2)$ is $\left(x_{2}, y_{2}\right)$ and $(-1,5)$ is $\left(x_{1}, y_{1}\right)$. In either case, you will get the same answer.
Let's say that $(4,-2)$ is $\left(x_{1}, y_{1}\right)$ and $(-1,5)$ is $\left(x_{2}, y_{2}\right)$. Be sure not to get confused! Then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-(-2)}{-1-4}=\frac{7}{-5}=-\frac{7}{5}
$$

NOTE: Regardless of the sign of the x-coordinates or the y-coordinates, the minus sign between the y-values and the x-values in the slope calculation must always be there.

Example 2: Calculate the Slope of a Line

Find the slope of the line passing through the points $(-1,3)$ and $(-4,-6)$.
Here you can say that $(-1,3)$ is $\left(x_{1}, y_{1}\right)$ and $(-4,-6)$ is $\left(x_{2}, y_{2}\right)$. However, you can also state that $(-4,-6)$ is $\left(x_{1}, y_{1}\right)$ and $(-1,3)$ is $\left(x_{2}, y_{2}\right)$. In either case, you will get the same answer.
Let's say that $(-4,-6)$ is $\left(x_{1}, y_{1}\right)$ and $(-1,3)$ is $\left(x_{2}, y_{2}\right)$. Be sure not to get confused! Then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-(-6)}{-1-(-4)}=\frac{3+6}{-1+4}=\frac{9}{3}=3
$$

NOTE: Regardless of the sign of the x-coordinates or the y-coordinates, the minus sign between the y-values and the x-values in the slope calculation must always be there.

Example 3: Calculate the Slope of a Line

Find the slope of the line passing through the points $(6,3)$ and $(6,4)$.
Let's say that $(6,3)$ is $\left(x_{1}, y_{1}\right)$ and $(6,4)$ is $\left(x_{2}, y_{2}\right)$. Be sure not to get confused! Then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-3}{6-6}=\frac{1}{0}
$$

Since there is a 0 in the denominator, this particular slope is undefined.

Example 4: Calculate the Slope of a Line

Find the slope of the line passing through the points $(1,5)$ and $(-9,5)$.
Let's say that $(1,5)$ is $\left(x_{1}, y_{1}\right)$ and $(-9,5)$ is $\left(x_{2}, y_{2}\right)$. Be sure not to get confused! Then

$$
m=\frac{y_{2}-y_{1}}{x_{2}-y_{x 1}}=\frac{5-5}{-9-1}=\frac{0}{-10}=0
$$

Since there is a 0 in the numerator, this particular slope equals 0 . Please note the difference between Example 3 and Example 4!

Example 5: Identify the Slopes of Lines

Identify the slopes of the graphs of the following lines. State whether the lines are increasing, decreasing, horizontal, or vertical.

1. $y=3 x+9$
$m=3$, the slope is positive, therefore, the line is an increasing
2. $y=-5 x-2$
$m=-2$, the slope is negative, therefore, the line is an decreasing
3. $y=6$
horizontal line, $m=0$
4. $x=-1$
vertical line, m is undefined

Example 6: Identify the Slope and the y-Intercept

Identify the slope, the y-intercept, and the ordered pair associated with the y-intercept given the linear equation $5 x+4 y-9=0$.
The equation is in general form. We must change it to slope-intercept form $y=m x+b$.
We will move the x-term and the constant to the right side of the equation into its proper position next to the equal sign as follows
$4 y=-5 x+9$
Next, we divide both sides of the equation by 4 to get the following:
$y=-\frac{5}{4} x+\frac{9}{4}$
We find that the slope is $-\frac{5}{4}$ and the y-intercept is $\frac{9}{4}$.
The ordered pair associated with the y-intercept is $\left(0, \frac{9}{4}\right)$.

