Examples
 Circumference and Area of Circles

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Memorize the definition of a circle.
2. Memorize and use the circumference formula of circles.
3. Memorize and use the area formula of circles.

Example 1: Circumference of Circles

Find the circumference C of a circle whose diameter is 16 cm . First give an exact answer (express in terms of π) and then find the decimal equivalent rounded to a whole number.

Since the diameter is given, we will use the formula $C=d \pi$.

Given is a diameter of $d=16$, then $C=16 \pi$, which is the exact answer.
To find the decimal equivalent of this answer, we use the following calculator input:

| 16 | \times | π | ENTER |
| :--- | :--- | :--- | :--- |\quad Note: Always use the π button!

We find that the circumference C is approximately 50 cm .

Example 2: Circumference of Circles

Find the diameter d of a circle whose circumference is 36 meters. First give an exact answer (express in terms of π) and then find the decimal equivalent rounded to a whole number.

Since the diameter is given, we will use the formula $C=d \pi$.
We are given $C=36$. Therefore, $36=d \pi$ and $\boldsymbol{d}=\frac{36}{\pi}$ which is the exact answer.
To find the decimal equivalent of this answer, we use the following calculator input:

36	\div	π	ENTER \quad Note: Always use the π button!

We find that the diameter d is approximately 11.46 m .

Example 3: Area of Circles

Find the area A of a circle whose diameter is 12 centimeters. First give an exact answer (express in terms of π) and then find the decimal equivalent rounded to a whole number.

Required formulas: $A=\pi r^{2}$ and $d=2 r$

We are given $d=12$ so that $r=6$. Therefore, $A=6^{2} \pi$ and $A=36 \pi$, which is the exact answer.

To find the decimal equivalent of this answer, we use the following calculator input:

| 36 | \times | π | $E N T E R$ |
| :--- | :--- | :--- | :--- |\quad Note: Always use the π button!

We find that the area A is approximately $113 \mathrm{~cm}^{2}$. Please note that the area units are squared.

Example 4: Area of Circles (1 of 2)

Given the picture below, find the area of the shaded ring rounded to the nearest hundredth. Assume that the point O is the center of both the small and the large circle. The distance OA, which is the radius of the small circle, is 5 meters and the distance $O B$, which is the radius of the large circle, is 11 meters.
First give an exact answer (express in terms of π) and then find the decimal equivalent rounded to a whole number.

We can find the area of the shaded ring by subtracting the area of the small circle from the area of the large circle!

Example 4: Area of Circles (2 of 2)

Required formula: $A=\pi r^{2}$
Area of large circle:
We are given $r=11$. Therefore, $A=11^{2} \pi$ and $A=121 \pi$, which is the exact answer.
Area of small circle:
We are given $r=5$. Therefore, $A=5^{2} \pi$ and $A=25 \pi$, which is the exact answer.
Then $A_{\text {shaded }}=121 \pi-25 \pi=96 \pi$, which is the exact answer.
Using the calculator, we find the area of the shaded ring to be approximately $302 \mathrm{~m}^{2}$. Please note that the area units are squared.

Example 5: Area of Circles (1 of 2)

Find the area of the following figure which consists of semi-circles attached to each side s of a square.

First given an exact answer (express in terms of π) and then find the decimal equivalent rounded to two decimal places.

A semi-circle is half of that of a circle! To find the area of a semi-circle we divide the area of a circle by 2.

Example 5: Area of Circles (2 of 2)
Required formulas: $A_{\text {circle }}=\pi r^{2}$ and $d=2 r$ and $A_{\text {square }}=s^{2}$
Area of the semi-circles
We are given $d=6$ so that $r=3$. Therefore, $A_{\text {circle }}=3^{2} \pi=9 \pi$, which is the exact answer.
Given 4 semi-circles, which is equivalent to 2 circles each with area $A=9 \pi$, we find the total area of the semi-circles in the figure to be 18π.

Area of the square
Given side s of the square to be 6 cm , then $A_{\text {square }}=6^{2}=36$.
Then $A_{\text {figure }}=18 \pi+36$, which is the exact answer.
Using the calculator, we find the area of the given figure to be approximately $92.55 \mathrm{~cm}^{2}$. Please note that the area units are squared.

