Concepts The Slope of a Line

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define and calculate the slope of a line.
2. Identify the slopes of increasing, decreasing, vertical, and horizontal lines.
3. Identify the slope and the y-intercept in the equation of a line.

NOTE: This lesson contains some examples. You can find more examples in the "Examples" document also located in the appropriate MOM Learning Materials folder.

1. Definition of the Slope of a Line ${ }_{(1 \text { o } 2)}$

Before we continue with our discussion on functions, lets first discuss the slope of a line. In layman's terms, the slope is a measure of the steepness of a line. It is said to be the change in vertical distance divided by the change in horizontal distance as we "travel" from one point, say $\left(x_{1}, y_{1}\right)$, to another, say $\left(x_{2}, y_{2}\right)$ lying on the same line in a rectangular coordinate system.

Definition of the Slope of a Line (2 of 2$)$

In mathematics, the slope of a line is indicated by using the lower-case letter m. Why m ? No one knows for sure. Some mathematicians claim the m comes from the French word "monter" which means "to climb". The slope of the line through two distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lying in a coordinate system is formally defined as

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

NOTE: Regardless of the sign of the x-coordinates or the y-coordinates, the minus sign between the y-values and the x-values in the slope calculation must always be there.
We can also say $m=\frac{\text { Rise }}{\text { Run }}$ or $m=\frac{\text { change in } y}{\text { change in } x}$

Definition of the Slope of a Line (з of 3)

Example 1:

Find the slope of the line passing through the points determined by the ordered pairs $(4,-2)$ and $(-1,5)$.

We will let $(4,-2)$ equal $\left(x_{1}, y_{1}\right)$ and $(-1,5)$ equal $\left(x_{2}, y_{2}\right)$. However, you can also let $(-1,5)$ equal $\left(x_{1}, y_{1}\right)$ and $(4,-2)$ equal $\left(x_{2}, y_{2}\right)$. In either case, you will get the same answer.
Let's say that $(4,-2)$ equals $\left(x_{1}, y_{1}\right)$ and $(-1,5)$ equals $\left(x_{2}, y_{2}\right)$. Be sure not to get confused!

Then $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-(-2)}{-1-4}=\frac{5+2}{-5}=\frac{7}{-5}=-\frac{7}{5}$

2. Identify the Slopes of Lines (1 of 2)

We learned that the slope of a line is its steepness. Specifically, the slope of the line through two distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lying in a coordinate system is formally defined as

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Now, we will investigate how the slope affects the characteristics of a line.

SLOPE OF INCREASING (RISING) LINES

An increasing line has a positive slope.

SLOPE OF DECREASING (FALLING) LINES

A decreasing line has a negative slope.

Identify the Slopes of Lines (2 of 2)

SLOPE OF HORIZONTAL LINES

All horizontal lines have a slope of 0 .

SLOPE AND VERTICAL LINES

All vertical lines have an undefined slope.

3. The Slope-Intercept Form of the Equation of a Line (1 of 2)

We have already discussed the general form of the linear equation. It is $A x+B y+C=0$, where A, B, and C are real numbers, but A and B cannot both be 0 .

Now we are going to discuss a different form of the linear equation. It is called the slope-intercept form and is defined as $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$, where m is the slope and b is the y-intercept.

Examples of linear equations in slope-intercept form:

$$
\begin{aligned}
& y=-18 x+11(\text { here } b=11) \\
& y=5 x-7(\text { here } b=-7) \\
& y=2 x(\text { here } b=0)
\end{aligned}
$$

The Slope-Intercept Form of the Equations of a Line (2 of 2)

Example 2:

Given the general form of the line $-18 x-y+11=0$, change it to slopeintercept form. Let's do the following manipulations:

```
-y+11=18x (added 18x to both sides)
-y=18x-11 (subtracted 11 from both sides)
y=-18x+11 (multiplied both sides by - 1)
```

As you can see, y is now isolated on one side. The given equation is now in slope-intercept form with $m=-18$ and $b=11$,

