Examples Scientific Notation

Based on power point presentations by Pearson Education, Inc. Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Write numbers as powers of 10 .
2. Define scientific notation.
3. Change from standard notation to scientific notation.
4. Change from scientific notation to standard notation.

Example 1: Powers of 10

Write the following numbers as powers of ten.

10
$=10^{1}$
NOTE: We have 1 zero, and the power is 1 .
100
$=10^{2}$
NOTE: We have 2 zeros, and the power is 2 .
1,000
$=10^{3}$
NOTE: We have 3 zeros, and the power is 3 .
10,000
$=10^{4}$
NOTE: We have 4 zeros, and the power is 4 .

Example 2: Powers of 10

Write the following numbers as powers of ten.
0.1
$=10^{-1}$
NOTE: The 1 is 1 place to the right of the decimal point, and the power is -1 .
0.01
$=10^{-2}$
NOTE: The 1 is 2 places to the right of the decimal point, and the power is -2 .
0.001
$=10^{-3}$
NOTE: The 1 is 3 places to the right of the decimal point, and the power is -3 .
0.0001
$=10^{-4}$
NOTE: The 1 is 4 places to the right of the decimal point, and the power is -4 .

Example 3: Change from Standard Notation to Scientific Notation (1 of 2)

Change 154000 to scientific notation using all non-zero digits.
Step 1:
We need to write the number as a value between 1 and 10 .
We get 1.54 using all non-zero digits.
Step 2:
Now we count the number of places the decimal point has shifted after writing 154000 as a value between 1 and 10 .
$1 \underbrace{5} 4 \underbrace{0} \stackrel{0}{-}$ We moved the decimal point 5 places to the left.

Example 3: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:
Since the decimal point has shifted 5 places to the left, the exponent of the base 10 is positive 5.

We use 10^{5}.

Step 3:
We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times.

The number 154000 is written as 1.54×10^{5} in scientific notation.

Example 4: Change from Standard Notation to Scientific Notation (1 of 2)

Change $\mathbf{0 . 0 2 7 9}$ to scientific notation using all non-zero digits.
Step 1:
We need to write the number as a value between 1 and 10 .
We get 2.79 using all non-zero digits.

Step 2:
Now we count the number of places the decimal point has shifted after writing 0.0279 as a value between 1 and 10 .
0. $\xrightarrow{0}{ }^{2}{ }^{9}$ We moved the decimal point 2 places to the right.

Example 4: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:
Since the decimal point has shifted 2 places to the right, the exponent of the base 10 is negative 2 .

We use 10^{-2}.

Step 3:
We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times.

The number 0.0279 is written as 2.79×10^{-2} in scientific notation.

Example 5: Change from Standard Notation to Scientific Notation (1 of 2)

Change $\mathbf{0 . 0 0 0 5 4 6 7}$ to scientific notation using all non-zero digits.
Step 1:
We need to write the number as a value between 1 and 10 .
We get 5.467 using all non-zero digits.
Step 2:
Now we count the number of places the decimal point has shifted after writing 0.0005467 as a value between 1 and 10 .
$0.0 \underbrace{0} \underbrace{5} 67$ We moved the decimal point 4 places to the right.

Example 5: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:
Since the decimal point has shifted 4 places to the right, the exponent of the base 10 is negative 4.

We use 10^{-4}.

Step 3:
We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times.

The number $\mathbf{0 . 0 0 0 5 4 6 7}$ is written as $5.467 \times \mathbf{1 0}^{-4}$ in scientific notation.

Example 6: Change from Scientific Notation to Standard Notation

a. Change 5.67×10^{3} to standard notation.

Using the calculator, we get 5670.
b. Change $\mathbf{7 . 4} \times \mathbf{1 0}^{-\mathbf{3}}$ to standard notation.

Using the calculator, we get 0.0074 .

