Examples Scientific Notation

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Write numbers as powers of 10.
- 2. Define scientific notation.
- 3. Change from standard notation to scientific notation.
- 4. Change from scientific notation to standard notation.

Example 1: Powers of 10

Write the following numbers as powers of ten.

```
10
   = 10^{1}
   NOTE: We have 1 zero, and the power is 1.
100
   = 10^2
   NOTE: We have 2 zeros, and the power is 2.
1,000
   = 10^3
   NOTE: We have 3 zeros, and the power is 3.
10,000
   = 10^4
   NOTE: We have 4 zeros, and the power is 4.
```

Example 2: Powers of 10

Write the following numbers as powers of ten.

```
0.1
    = 10^{-1}
    NOTE: The 1 is 1 place to the right of the decimal point, and the power is -1.
0.01
    = 10^{-2}
    NOTE: The 1 is 2 places to the right of the decimal point, and the power is -2.
0.001
    = 10^{-3}
    NOTE: The 1 is 3 places to the right of the decimal point, and the power is -3.
0.0001
    = 10^{-4}
```

NOTE: The 1 is 4 places to the right of the decimal point, and the power is -4.

Example 3: Change from Standard Notation to Scientific Notation (1 of 2)

Change **154000** to scientific notation using all non-zero digits.

Step 1:

We need to write the number as a value between 1 and 10.

We get 1.54 using all non-zero digits.

Step 2:

Now we count the number of places the decimal point has shifted after writing 154000 as a value between 1 and 10.

Example 3: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:

Since the decimal point has shifted 5 places to the **left**, the exponent of the base 10 is **positive 5**.

We use 10^5 .

Step 3:

We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times .

The number **154000** is written as 1.54×10^{5} in scientific notation.

Example 4: Change from Standard Notation to Scientific Notation (1 of 2)

Change 0.0279 to scientific notation using all non-zero digits.

Step 1:

We need to write the number as a value between 1 and 10.

We get 2.79 using all non-zero digits.

Step 2:

Now we count the number of places the decimal point has shifted after writing 0.0279 as a value between 1 and 10.

We moved the decimal point 2 places to the **right**.

Example 4: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:

Since the decimal point has shifted 2 places to the **right**, the exponent of the base 10 is **negative 2**.

We use 10^{-2} .

Step 3:

We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times .

The number **0.0279** is written as 2.79×10^{-2} in scientific notation.

Example 5: Change from Standard Notation to Scientific Notation (1 of 2)

Change 0.0005467 to scientific notation using all non-zero digits.

Step 1:

We need to write the number as a value between 1 and 10.

We get 5.467 using all non-zero digits.

Step 2:

Now we count the number of places the decimal point has shifted after writing 0.0005467 as a value between 1 and 10.

0.0005467 We moved the decimal point 4 places to the right.

Example 5: Change from Standard Notation to Scientific Notation (2 of 2)

Step 2 continued:

Since the decimal point has shifted 4 places to the **right**, the exponent of the base 10 is **negative 4**.

We use 10^{-4} .

Step 3:

We multiply the number found in Step 1 with the exponential expression found in Step 2 using the multiplication symbol \times .

The number **0.0005467** is written as 5.467×10^{-4} in scientific notation.

Example 6: Change from Scientific Notation to Standard Notation

a. Change 5.67×10^3 to standard notation.

Using the calculator, we get **5670**.

b. Change 7.4×10^{-3} to standard notation.

Using the calculator, we get 0.0074.