Examples
 Introduction to Radicals and Logarithms

Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

1. Define and evaluate some radical expressions.
2. Define and evaluate some logarithmic expressions.
3. Memorize and apply the Change-of-Base Property for logarithms.

Example 1: Evaluate a Radical Expression

Evaluate $\sqrt{81}$ without a calculator.
! We are asked to evaluate the "square root of 81 ". It has index 2 . Since square roots occurs frequently in mathematics, we do not write the index. Seeing a radical without an index, always means that it is 2 .

We are asked to reverse the operation of raising a number to the $2^{\text {nd }}$ power. We know that $81=9 \cdot 9=9^{2}$, therefore, $\sqrt{81}=\sqrt{9^{2}}=9$.

The solution is a rational number, more specifically an integer.

Please note that $(-9) \cdot(-9)$ also equals 81. However, BY DEFINITION a radical expression with EVEN index always asks us to find a positive number. This number is called the principal root.

Example 2: Evaluate a Radical Expression

Evaluate $\sqrt{81}$ with a calculator.
We will use the TI-30X IIS.

- Press the $2^{\text {nd }}$ button and then the x^{2} button. We will see $\sqrt{(}$.
- Type 81 and press the right parentheses) button to close the set.
- Press the ENTER button.

The answer is 9 which is a rational number and more specifically an integer.

Example 3: Evaluate a Radical Expression

Evaluate $\sqrt{36}$ and $-\sqrt{36}$ without a calculator.
We are asked to evaluate the "square root of 36 ." We know that $36=6 \cdot 6=6^{2}$.
Therefore, $\sqrt{36}=\sqrt{6^{2}}=6$.
Since $-\sqrt{36}=-1 \cdot \sqrt{36}$, we find that $-\sqrt{36}=-6$.

The solutions are rational numbers, more specifically integers.

Example 4: Evaluate a Radical Expression

Evaluate $\sqrt[3]{64}$ without a calculator.
We are asked to evaluate the "cube root of 64 ". We know that $64=4 \cdot 4 \cdot 4=4^{3}$. Therefore, $\sqrt[3]{64}=\sqrt[3]{4^{3}}=4$.

The solution is a rational number, more specifically an integer.

Example 5: Evaluate a Radical Expression

Evaluate $\sqrt[3]{64}$ with a calculator.
We will use the TI-30X IIS.

- Type the index 3.
- Press the $2^{\text {nd }}$ button and then the ${ }^{\wedge}$ (caret) button. We will see $3 \sqrt[x]{ }$
- Type 64.
- Press the ENTER button.

The answer is 4 which is a rational number and more specifically an integer.

Example 6: Evaluate Radical Expressions

Evaluate $\sqrt[5]{-32}$ without a calculator.
We are asked to evaluate a fifth root. We know that
$(-2)(-2)(-2)(-2)(-2)=-32$
There are five (-2) 's matching 5 in index!
Therefore, $\sqrt[5]{-32}=-2$.
The solution is a rational number, more specifically an integer.

Example 7: Evaluate a Radical Expression

Evaluate $\sqrt[3]{\frac{125}{27}}$ without a calculator.

We are allowed to distribute the radical to the numerator and denominator as follows:
$\sqrt[3]{125}$
$\sqrt[3]{27}$
$!$ We know that $125=5(5)(5)$ and $27=3(3)(3)$ and the three 5 's and three 3 's match the the 3 in the index.
Therefore, $\sqrt[3]{\frac{125}{27}}=\frac{\sqrt[3]{125}}{\sqrt[3]{27}}=\frac{5}{3}$.

The solution is a rational number.

Example 8: Evaluate a Radical Expression

Evaluate $\sqrt{105625}$ with a calculator.
We will use the TI-30X IIS.

- Press the $2^{\text {nd }}$ button and then the x^{2} button. Wee will see $\sqrt{(}$.
- Type 105625.
- Press the right parenthesis) button to close the set.
- Press the ENTER button.

The answer is 325 which is a rational number and more specifically an integer.

Example 9: Evaluate a Logarithmic Expression

Evaluate $\log 1000$ with a calculator.
We will use the TI-30X IIS.

- Press the LOG button because we are dealing with a log base 10. You will see log (.
- Type 1000.
- Press the right parenthesis button) to "close" the set.
- Press the ENTER button.

The answer is $\mathbf{3}$ which is a rational number and more specifically an integer.

Example 10: Evaluate a Logarithmic Expression

Evaluate $\ln 1$ with a calculator.

We will use the TI-30X IIS.

- Press the LN button because we are dealing with a log base \boldsymbol{e}. You will see In (.
- Type 1.
- Press the right parenthesis button) to "close" the set.
- Press the ENTER button.

The answer is $\mathbf{0}$ which is a rational number and more specifically an integer.

Example 11: Use the Change-of-Base Property

Evaluate $\log _{3} 8$. Round the answer to two decimal places.
Let's use both versions of the Change-of-Base Property to illustrate that it does not matter which one we use. In either case, we must use a calculator.

Using log base 10: $\log _{3} 8=\frac{\log 8}{\log 3} \cong 1.89$

Using log base e: $\quad \log _{3} 8=\frac{\ln 8}{\ln 3} \cong 1.89$

