Examples Irrational and Real Numbers

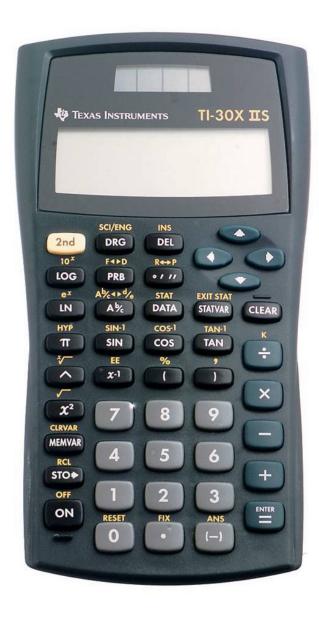
Based on power point presentations by Pearson Education, Inc.
Revised by Ingrid Stewart, Ph.D.

Learning Objectives

- 1. Define irrational numbers.
- 2. Evaluate irrational numbers derived from radicals.
- 3. Evaluate irrational numbers derived from logarithms.
- 4. Evaluate irrational numbers derived from nature.
- 5. Define real numbers and recognize their subsets.

NOTE: This lesson contains some examples. You can find more examples in the "Examples" document also located in the appropriate MOM Learning Materials folder.

Example 1: Evaluate Radicals



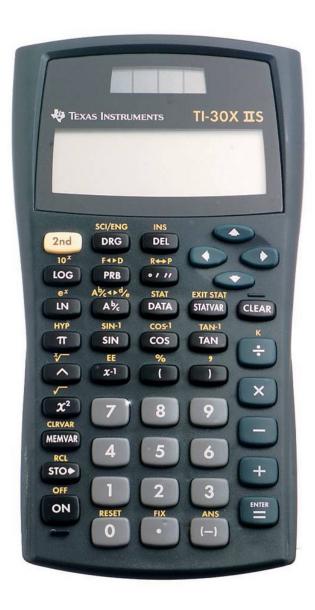
Evaluate $\sqrt{10}$ with a calculator.

We will use the TI-30X IIS.

- Press the 2nd button. Then the x^2 button. We will see $\sqrt{(}$.
- Type **10** and press the right parenthesis **)** button to close the set.
- Press the ENTER button.

The answer is **3.16227766** ... which has infinitely many decimal places. This makes it an irrational number.

Example 2: Evaluate Radicals



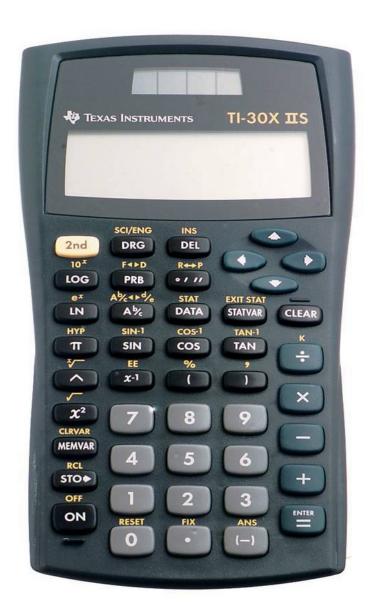
Evaluate $\sqrt[3]{40}$ on the calculator.

We will use the TI-30X IIS.

- Type the index 3.
- Press the 2nd button. Then the caret ^ button. We will see 3 .
- Type **40**.
- Press the ENTER button.

The answer is **3.419951893** ... which has infinitely many decimal places. This makes it an irrational number.

Example 3: Evaluate a Logarithmic Expression



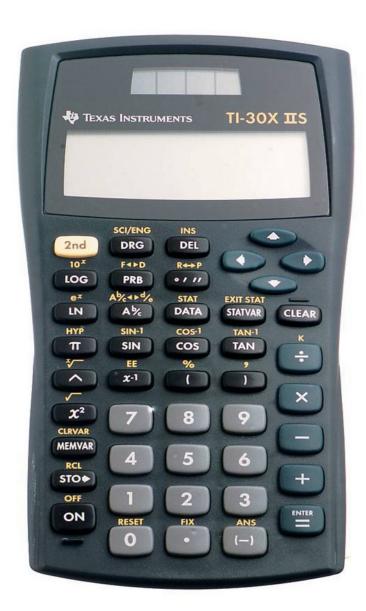
Evaluate **log 99** with a calculator.

We will use the TI-30X IIS.

- Press the LOG button because we are dealing with a log base 10. You will see log (.
- Type **99**.
- Press the right parenthesis button) to "close" the set.
- Press the ENTER button.

The answer is **1.995635195** ... which has infinitely many decimal places. This makes it an irrational number.

Example 4: Evaluate a Logarithmic Expression



Evaluate In 2 with a calculator.

We will use the TI-30X IIS.

- Press the LN button because we are dealing with a log base e. You will see In (.
- Type **2**.
- Press the right parenthesis button) to "close" the set.
- Press the ENTER button.

The answer is **0.693147181** ... which has infinitely many decimal places. This makes it an irrational number.

Example 5: Evaluate Expressions Containing π and e

a. Evaluate $\frac{3}{\pi}$ + 4 using the calculator. Round to 2 decimal places. Use the π button on the calculator and not 3.14! ÷

We find that $\frac{3}{\pi}$ + 4 is approximately equal to **4.95**.

Calculator Input: $3 \div \pi + 4 EN$

b. Evaluate $e^2 - 1$ using the calculator. Round to 3 decimal places. Use the e function on the calculator and not 2.72!

We find that $e^2 - 1$ is approximately equal to **6.389**.

Calculator Input: 2nd LN 2) — 1 ENTER

Example 6: Evaluate Expressions Containing *e* and Logarithms

Evaluate $\ln\left(\frac{1}{e^3}\right)$ using the calculator. Round to 2 decimal places.

Use the *e* function on the calculator and not 2.72!

We find that $\ln\left(\frac{1}{e^3}\right)$ is exactly equal to -3.

Calculator Input:

Example 7: Recognize Subsets of the Real Numbers

Consider the following set of numbers:

$$\left\{-9,-1.3,0,0.\overline{3},\pi,9,10\right\}$$

List the numbers in the set that are natural numbers: The natural numbers in the set are 9 and 10.

List the numbers in the set that are whole numbers: The whole numbers in the set are 0, 9, and 10.

Example 8: Recognize Subsets of the Real Numbers

Consider the following set of numbers.

$$\left\{-9,-1.3,0,0.\overline{3},\pi,9,10\right\}$$

List the numbers in the set that are integers:

The numbers in the set that are integers are -9, 0, 9, and 10.

List the numbers in the set that are rational numbers:

The numbers in the set that are rational numbers are

$$-9$$
, -1.3 , 0 , $0.\overline{3} = \frac{1}{3}$, 9 , and 10 .

Example 9: Recognize Subsets of the Real Numbers

Consider the following set of numbers.

$$\left\{-9,-1.3,0,0.\overline{3},\pi,9,10\right\}$$

List the numbers in the set that are irrational numbers.

The numbers in the set that are irrational numbers is π (Pi).