

PROBLEMS AND SOLUTIONS - POLYNOMIAL FUNCTIONS
Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

PLEASE NOTE THAT YOU CANNOT ALWAYS USE A CALCULATOR ON THE ACCUPLACER -COLLEGE-LEVEL MATHEMATICS TEST! YOU MUST BE ABLE TO DO SOME PROBLEMS WITHOUT A CALCULATOR!

Problem 1:
Given $f(x)=3 x^{5}-5 x+9$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 2:

Given $g(x)=-x^{3}+2 x^{2}-x+2$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 3:

Given $h(x)=\frac{1}{2} x^{4}+3 x^{3}-x^{2}+x+5$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 4:

Given $\boldsymbol{k}(\boldsymbol{x})=-\frac{3}{2} \boldsymbol{x}^{6}-\boldsymbol{x}^{2}-\mathbf{2}$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 5:

Given $g(x)=x^{5}+x^{4}-14 x^{3}-14 x^{2}+49 x+49$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 6:

Given $m(x)=x^{4}-\mathbf{8} x^{3}+18 x^{2}-27$ and its graph

find the following:
a. Leading coefficient and degree of the polynomial
b. Number of real Zeros and their approximate values using the graph
c. Number of imaginary Zeros

Problem 7:

Show that $\boldsymbol{h}(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\mathbf{4}}+\mathbf{3} \boldsymbol{x}^{3}-\boldsymbol{x}^{2}+\boldsymbol{x}+\mathbf{5}$ has a real Zero between -2 and -1 .

Problem 8:

Show that $\boldsymbol{g}(x)=-x^{3}+2 x^{2}-x+2$ has a real Zero between 1 and 3.

Problem 9:

If the polynomial $f(x)=3 x^{5}-5 x+9$ has exactly one real Zero r between -4 and 0 , which of the following is true?

$$
\begin{aligned}
& -4<r<-3 \\
& -3<r<-2 \\
& -2<r<-1 \\
& -1<r<0
\end{aligned}
$$

Problem 10:

Find the factored form of a polynomial function with leading coefficient $\mathbf{6}$ and the following Zeros:
$-\frac{7}{8}, \frac{5}{2}$, and 3

Problem 11:

Find the factored form of a polynomial function with leading coefficient $\mathbf{2}$ and the following Zeros:

$$
\left.1-\sqrt{\mathbf{3}}, \mathbf{1}+\sqrt{\mathbf{3}}, \text { and }^{\frac{2}{3}} \text { (multiplicity } 2\right)
$$

Problem 12:

Find the factored form of a polynomial function with leading coefficient $\mathbf{2}$ and the following Zeros:
$\mathbf{1 - 2 i} \mathbf{1}+\mathbf{2 i}$, and $-\mathbf{5}$ (multiplicity 3)

Problem 13:

Find the factored form of a polynomial function with leading coefficient 1 and the following Zeros:
-5 (multiplicity 3), $-2-i \sqrt{7}$, and $-2+i \sqrt{7}$

Problem 14:

Find the factored form of three polynomial functions with the following Zeros and leading coefficients $\mathbf{1 , 5}$, and $\mathbf{- 1 0}$.

0, 2, and -3 (multiplicity 2)

Problem 15:

If \boldsymbol{i} is a Zero, what other imaginary number MUST also be a Zero according to the Conjugate Pairs Theorem?

Problem 16:

If $\mathbf{3 - 2 i}$ is a Zero, what other imaginary number MUST also be a Zero according to the Conjugate Pairs Theorem?

Problem 17:

If $\mathbf{1 + 6 i}$ is a Zero, what other imaginary number MUST also be a Zero according to the Conjugate Pairs Theorem?

Problem 18:

If $\mathbf{- 5} \mathbf{- 6 \boldsymbol { i }}$ is a Zero, what other imaginary number MUST also be a Zero according to the Conjugate Pairs Theorem?

SOLUTIONS

You can find detailed solutions below the link for this problem set!

Problem 1:

The leading coefficient, 3, is positive and the degree of the polynomial is five, which is odd.

We know that the function must have five Zeros because it is of degree five. Looking at the graph, we notice that the function has one real Zero, which must have an approximate value of $\mathbf{- 1 . 5}$ (the x-intercept).

Since there is only one real Zero, the function must have four imaginary Zeros. Remember that imaginary Zeros occur in conjugate pairs!

Problem 2:

The leading coefficient, $\mathbf{- 1}$, is negative and the degree of the polynomial is three, which is odd.

We know that the function must have three Zeros because it is of degree three. Looking at the graph, we notice that the function has one real Zero, which must have an approximate value of 2 (the x-intercept).

Since there is only one real Zero, the function must have two imaginary Zeros. Remember that imaginary Zeros occur in conjugate pairs!

Problem 3:

The leading coefficient, ${ }^{\frac{1}{2}}$, is positive and the degree of the polynomial is four, which is even.

We know that the function must have four Zeros because it is of degree four. Looking at the graph, we notice that the function has two real Zeros, which must have an approximate value of -6.25 and -1 (the x-intercepts).

Since there are two real Zero, the function must have two imaginary Zeros. Remember that imaginary Zeros occur in conjugate pairs!

Problem 4:

The leading coefficient, ${ }^{-\frac{3}{2}}$, is negative and the degree of the polynomial is six, which is even.

We know that the function must have six Zeros because it is of degree six. Looking at the graph, we notice that the function has no real Zeros since it has no x-intercepts.

Since there are no real Zeros, the function must have six imaginary Zeros. Remember that imaginary Zeros occur in conjugate pairs!

Problem 5:

The leading coefficient, $\mathbf{1}$, is positive and the degree of the polynomial is five, which is odd.

We know that the function must have five Zeros because it is of degree five. Looking at the graph, we notice that the function has three real Zeros, which must have an approximate value of $\mathbf{- 2 . 7 5}$ and $\mathbf{- 1}$ and $\mathbf{2 . 7 5}$ (the x-intercepts). However, since the graph is parabolic in shape at the intercept $\mathbf{- 2 . 7 5}$ and $\mathbf{2 . 7 5}$, they must represent Zeros of even multiplicity.

Given a degree of five, we concede that this polynomial must have double Zeros at -2.75 and $\mathbf{2 . 7 5}$ and a single Zero at $\mathbf{- 1}$.

Since there are five real Zeros, the function has no imaginary Zeros.

Problem 6:

The leading coefficient, $\mathbf{1}$ is positive and the degree of the polynomial is four, which is even.

We know that the function must have four Zeros because it is of degree four. Looking at the graph, we notice that the function has two real Zeros, which must have an approximate value of $\mathbf{- 1}$ and $\mathbf{3}$ (the \mathbf{x}-intercepts). However, since the graph mimics the picture of a cubic function at the intercept 3, it must represent a Zero of odd multiplicity greater than 1.

Given a degree of four, we concede that this polynomial must have a triple Zeros at $\mathbf{3}$ and a single Zero at -1.

Since there are four real Zeros, the function has no imaginary Zeros.

Problem 7:

We will use the Intermediate Value Theorem to find whether the values of $\boldsymbol{h}(-1)$ and $\boldsymbol{h}(-$ 2) are of opposite sign. If this is the case, then by the Intermediate Value Theorem we can conclude that there must be an x-intercept, and hence a real Zero.

$$
\begin{aligned}
& h(-1)=\frac{\frac{1}{2}}{2}(-1)^{4}+3(-1)^{3}-(-1)^{2}+(-1)+5=\frac{3}{2} \\
& h(-2)=\frac{\frac{1}{2}}{2}(-2)^{4}+3(-2)^{3}-(-2)^{2}+(-2)+5=-22
\end{aligned}
$$

Since the values of $\boldsymbol{h}(\mathbf{- 1})$ and $\boldsymbol{h}(-2)$ are of opposite sign, we can conclude that there is an x-intercept between -2 and -1, and hence a real Zero.

Following is the graph of the polynomial function to illustrate our reasoning.

Problem 8:

Show that $\boldsymbol{g}(x)=-x^{3}+2 x^{2}-x+2$ has a real Zero between 1 and 3.
We will use the Intermediate Value Theorem to find whether the values of $\boldsymbol{g}(\mathbf{1})$ and $\boldsymbol{g}(\mathbf{3})$ are of opposite sign. If this is the case, then by the Intermediate Value Theorem we can conclude that there must be an x-intercept, and hence a real Zero.
$g(1)=-(1)^{3}+2(1)^{2}-1+2=2$
$g(3)=-(3)^{3}+2(3)^{2}-3+2=-7$
Since the values of $\boldsymbol{g}(\mathbf{1})$ and $\boldsymbol{g}(\mathbf{3})$ are of opposite sign, we can conclude that there is an x-intercept between 1 and 3, and hence a real Zero.

Following is the graph of the polynomial function to illustrate our reasoning.

Problem 9:

We will use the Intermediate Value Theorem to find whether the values of $\boldsymbol{f}(-4)$ and $\boldsymbol{f}(-3)$ are of opposite sign. If they are not, we will find whether the values of $\boldsymbol{f}(-3)$ and $\boldsymbol{h}(-2)$ are of opposite sign, and so on.

$$
\begin{aligned}
& f(-4)=3(-4)^{5}-5(-4)+9=-3043 \\
& f(-3)=3(-3)^{5}-5(-3)+9=-705 \\
& f(-2)=3(-2)^{5}-5(-2)+9=-77 \\
& f(-1)=3(-1)^{5}-5(-1)+9=11
\end{aligned}
$$

Since the values of $\boldsymbol{f}(-2)$ and $\boldsymbol{f}(-1)$ are of opposite sign, we can conclude that there is an x-intercept between -2 and -1 , and hence a real Zero.

Following is the graph of the polynomial funciton to illustrate our reasoning.

Problem 10:

$$
\begin{aligned}
& y=6\left[x-\left(-\frac{1}{3}\right)\right]\left(x-\frac{5}{2}\right)(x-3) \\
& y=6\left(x+\frac{1}{3}\right)\left(x-\frac{5}{2}\right)(x-3) \\
& \text { or } y=(3 x+1)(2 x-5)(x-3)
\end{aligned}
$$

Problem 11:

$$
\begin{aligned}
& y=2[x-(1-\sqrt{3})][x-(1+\sqrt{3})]\left(x-\frac{2}{3}\right)^{2} \\
& y=2(x-1+\sqrt{3})(x-1-\sqrt{3})\left(x-\frac{2}{3}\right)^{2}
\end{aligned}
$$

Problem 12:

$$
\begin{aligned}
& y=2[x-(1-2 i)][x-(1+2 i)][x-(-5)]^{3} \\
& y=2(x-1+2 i)(x-1-2 i)(x+5)^{3}
\end{aligned}
$$

Problem 13:

$$
p(x)=(x+5)^{3}(x+2+i \sqrt{7})(x+2-i \sqrt{7})
$$

Problem 14:

$$
\begin{aligned}
& p(x)=x(x-2)(x+3)^{2} \\
& f(x)=5 x(x-2)(x+3)^{2} \\
& g(x)=-10 x(x-2)(x+3)^{2}
\end{aligned}
$$

Following is a graph showing all three functions. Note that these functions have the same Zeros. The different leading coefficients affect the location of the peaks and valleys.

The solid graph (red) shows the function \boldsymbol{p}; the dotted graph (blue) shows the function \boldsymbol{f}; and the dashed graph (green) shows the function \boldsymbol{g}.

Problem 15:

Answer: -i because imaginary Zeros occur in conjugate pairs.

Problem 16:

Answer: $\mathbf{3 + 2 i}$ because imaginary Zeros occur in conjugate pairs.

Problem 17:

Answer: 1-6i because imaginary Zeros occur in conjugate pairs.

Problem 18:

Answer: $\mathbf{- 5}+\mathbf{6 i}$ because imaginary Zeros occur in conjugate pairs.

