$\lim _{x \rightarrow \infty} \int_{2}^{3} \frac{1}{d x} d y$
TECHNIQUES FOR FINDING SOME LIMITS ANALYTICALLY
Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada
Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!
We already know from the previous section that

$$
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{c}} \boldsymbol{x}=\boldsymbol{c} \text { and } \lim _{x \rightarrow \boldsymbol{c}} \boldsymbol{b}=\boldsymbol{b}, \text { where } \boldsymbol{b} \text { is any constant }
$$

Properties of Limits
Let $\lim _{x \rightarrow c} \boldsymbol{f}(x)=\boldsymbol{L}$ and $\lim _{x \rightarrow c} \boldsymbol{g}(x)=\boldsymbol{M}$.

1. Limit of a Sum/Difference :

$$
\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)=L \pm M
$$

2. Limit of $\boldsymbol{k f}(\boldsymbol{x})$, where \boldsymbol{k} is a Constant:

$$
\lim _{x \rightarrow c}[k f(x)]=k \lim _{x \rightarrow c} f(x)=k L
$$

3. Limit of a Product:

$$
\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)=L \cdot M
$$

4. Limit of a Quotient:

$$
\lim _{x \rightarrow c}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}=\frac{L}{M} \text {, where } M \neq 0
$$

5. Limit of $[\boldsymbol{f}(\boldsymbol{x})]^{\boldsymbol{n}}$, where $\boldsymbol{n} \boldsymbol{>} \boldsymbol{0}$ is an integer:

$$
\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}=L^{n}
$$

6. Limit of $\sqrt[n]{\boldsymbol{f}(\boldsymbol{x})}$, where $\boldsymbol{n} \geq \mathbf{2}$ is an integer and $\boldsymbol{L} \geq \boldsymbol{0}_{\text {if }} \boldsymbol{n}$ is even:

$$
\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}=\sqrt[n]{L}
$$

7. Limit of a Composite Function:

$$
\lim _{x \rightarrow c} f[g(x)]=f\left[\lim _{x \rightarrow c} g(x)\right]=f(M)
$$

Limits of Polynomial and Rational Functions

1. If p is a polynomial function, then $\lim _{x \rightarrow c} p(x)=p(c)$.
2. If $\frac{\rho}{\boldsymbol{q}}$ is a rational function and $\boldsymbol{q}(\boldsymbol{c}) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{\rho(x)}{G(x)}=\frac{\rho(c)}{G(c)}
$$

Limits of Trigonometric Functions

1. Limit of the functions $\sin x, \cos x, \tan x, \csc x, \sec x$, and $\cot x$, where $\boldsymbol{f} \boldsymbol{(c)}$ is NOT undefined:

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Please note that the domain for $\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ and $\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ is $(-\infty, \infty)$, the domain for
 is $\{\boldsymbol{x} \mid \boldsymbol{x} \neq \boldsymbol{k} \pi\}$
2. $\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta}\right)=1$
3. $\lim _{\theta \rightarrow 0}\left(\frac{1-\cos \theta}{\theta}\right)=0$

Check out the documents entitled "The Squeezing Theorem" and "Proofs of Some Trigonometric Limits."

Strategies for Finding Some Limits:

1. Find the domain of the function.
2. Depending on the value of \boldsymbol{C} and the domain, do one of the following:
a. If we are approaching x-values which are in the domain, but NOT endpoints of the domain of an algebraic or trigonometric function (excluding piecewise-defined functions), then we use one or more of the seven Limit Laws or Theorem 1 and 2 above to find the Limit.
b. If we are approaching x-values which are in the domain and are endpoints of the domain of an algebraic or trigonometric function, then the Limit does NOT exist because either the right-sided or the left-sided limit does not exist.
c. If we are approaching x-values which are NOT in the domain of a rational function, then the Limit may or may not exist.
(1) Reduce any rational expression to lowest terms, if necessary.
(2) Depending on the rational expression, do one of the following:

- If the \boldsymbol{x}-value we are approaching creates $\mathbf{0}$ in the denominator of the reduced rational expression, we are approaching a vertical asymptote in the graph of the function and the Limit does NOT exist.
- If the x -value we are approaching DOES NOT create $\mathbf{0}$ in the denominator of the reduced rational expression OR the expression when reduced does not have a variable in the denominator, we are approaching a hole in the graph of the function and the Limit exists.
d. If we are approaching x-values which are NOT in the domain of a trigonometric function, then the Limit may or may NOT exist. For example, see the Special
Trigonometric Limits!!!

Problem 1:

Given $f(x)=3 x+3$, find $\lim _{x \rightarrow 2} f(x)$.
The domain of the function is $(-\infty, \infty)$.
Remember that if p is a polynomial function, then $\lim _{x \rightarrow c} p(x)=p(c)$,
We can find the limit by direct substitution as follows:
$\lim _{x \rightarrow 2}(3 x+3)=3(2)+3=9$

Problem 2:

Given $f(x)=x^{4}-3 x^{2}-9$, find $\lim _{x \rightarrow 2} f(x)$.
The domain of the function is $(-\infty, \infty)$.
$\lim \left(x^{4}-3 x^{2}-9\right)=(2)^{4}-3(2)^{2}-9=-5$
$x \rightarrow 2$

Given $f(x)=x^{2}$, find $\lim _{x \rightarrow 2} f(x)$
The domain of the function is $(-\infty, \infty)$.

$$
\lim _{x \rightarrow 2} x^{2}=(2)^{2}=4
$$

Problem 4:

Given $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}+\mathbf{3}}{\boldsymbol{x}+\mathbf{6}}$, find the following limits.
Remember, that if $\frac{\rho}{\boldsymbol{q}}$ is a rational function and $\boldsymbol{q}(\boldsymbol{c}) \neq \boldsymbol{0}$, then $\lim _{x \rightarrow c} \frac{\rho(x)}{\boldsymbol{\varphi}(x)}=\frac{\rho(c)}{\boldsymbol{q}(c)}$!
The domain of the function is $\{x \mid x \neq-6\}$.
a. $\lim _{x \rightarrow 2} f(x)$

Since $\mathbf{2}$ is in the domain of the given function, we can find the limit by direct substitution as follows:

$$
\lim _{x \rightarrow 2}\left(\frac{x+3}{x+6}\right)=\frac{2+3}{2+6}=\frac{5}{8}
$$

b. ${ }^{\lim _{\rightarrow-6} f(x)}$

Since $\mathbf{- 6}$ is NOT in the domain of the given function, we first must ensure that the function \boldsymbol{f} is reduced to lowest terms, which it is.

Since the x -value we are approaching creates $\mathbf{0}$ in the denominator of the reduced rational expression, we are approaching a vertical asymptote in the graph of the function and

$$
\lim _{x \rightarrow-6} f(x) \text { does not exist }
$$

Given $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{x}-\mathbf{2}}{\boldsymbol{x}^{2}-4}$, find the following limits.
The domain of the function is $\{x \mid x \neq-2, x \neq 2\}$.
a. $\lim _{x \rightarrow 1} f(x)$

Since $\mathbf{1}$ is in the domain of the given function, we can find the limit by direct substitution as follows:
$\lim _{x \rightarrow 1}\left(\frac{x-2}{x^{2}-4}\right)=\frac{1-2}{1^{2}-4}=\frac{1}{3}$
b. $\lim _{x \rightarrow-2} f(x)$

Since $\mathbf{- 2}$ is NOT in the domain of the given function, we first must ensure that the rational expression is reduced to lowest terms.

This is done as follows:

$$
\lim _{x \rightarrow-2}\left(\frac{x-2}{x^{2}-4}\right)=\lim _{x \rightarrow-2}\left[\frac{x-2}{(x-2)(x+2)}\right]=\lim _{x \rightarrow-2}\left(\frac{1}{x+2}\right)
$$

Since the x -value we are approaching creates $\boldsymbol{0}$ in the denominator of the reduced rational expression, we are approaching a vertical asymptote in the graph of the function and

$$
\lim _{x \rightarrow-2} f(x)
$$

does not exist.

c. $\lim _{x \rightarrow 2} f(x)$

Since 2 is NOT in the domain of the given function, we again must ensure that the rational expression is reduced to lowest terms.

$$
\lim _{x \rightarrow 2}\left(\frac{x-2}{x^{2}-4}\right)=\lim _{x \rightarrow 2}\left[\frac{x-2}{(x-2)(x+2)}\right]=\lim _{x \rightarrow 2}\left(\frac{1}{x+2}\right)
$$

Since the x -value we are approaching DOES NOT create $\mathbf{0}$ in the denominator of the reduced rational expression, we are approaching a hole in the graph of the function and

$$
\lim _{x \rightarrow 2}\left(\frac{x-2}{x^{2}-4}\right)=\lim _{x \rightarrow 2}\left(\frac{1}{x+2}\right)=\frac{1}{2+2}=\frac{1}{4} .
$$

Problem 6:

Given $f(x)=\frac{x^{2}-4}{x-2}$, find the following limits.
The domain of the function is $\{\boldsymbol{x} \mid \boldsymbol{x} \neq \mathbf{2 \}}$.
a. $\lim _{x \rightarrow 1} f(x)$

Since $\mathbf{1}$ is in the domain of the given function, we can find the limit by direct substitution as follows:
$\lim _{x \rightarrow 1}\left(\frac{x^{2}-4}{x-2}\right)=\frac{1^{2}-4}{1-2}=\frac{3}{1}=3$
b. $\lim _{x \rightarrow 2} f(x)$

Since 2 is NOT in the domain of the given function, we again must ensure that the rational expression is reduced to lowest terms.

$$
\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)=\lim _{x \rightarrow 2}\left[\frac{(x-2)(x+2)}{x-2}\right]=\lim _{x \rightarrow 2}(x+2)
$$

We can see that there is NO denominator containing variables to worry about! Therefore, we are approaching a hole in the graph of the function and

$$
\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)=\lim _{x \rightarrow 2}(x+2)=2+2=4
$$

Given $f(x)=\sin x$, find $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$
The domain of the function is $(-\infty, \infty)$.
Since $\frac{\pi}{2}$ is in the domain of the given function, we can find the limit by direct substitution as follows:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \sin x=\sin \frac{\pi}{2}=1
$$

Problem 8:

Given $f(x)=\cos x$, find $\lim _{x \rightarrow \frac{7}{3}} f(x)$.
The domain of the function is $(-\infty, \infty)$.
Since ${ }^{\frac{\pi}{3}}$ is in the domain of the given function, we can find the limit by direct substitution as follows:

$$
\lim _{x \rightarrow \frac{\pi}{3}} \cos x=\cos \frac{\pi}{3}=\frac{1}{2}
$$

Problem 9:

Given $\boldsymbol{f} \boldsymbol{X} \boldsymbol{x}=\boldsymbol{\operatorname { t a n }} \boldsymbol{X}$, find the following limits.
The domain of the function is $\left\{x \left\lvert\, x \neq \frac{\pi}{2}+\boldsymbol{k} \pi\right.\right\}$.
a. ${ }^{\lim _{x \rightarrow \frac{7}{3}} f(x)}$

Since ${ }^{\frac{\pi}{3}}$ is in the domain of the given function, we can find the limit by direct substitution as follows:

$$
\lim _{x \rightarrow \frac{\pi}{3}} \tan x=\tan \frac{\pi}{3}=\sqrt{3}
$$

b. $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$

Since ${ }^{\frac{\pi}{2}}$ is NOT in the domain of the given function, we are approaching a vertical asymptote in the graph of the function and

$$
\lim _{x \rightarrow \frac{\pi}{2}} f(x) \text { does not exist }
$$

Problem 10:

Given $\boldsymbol{f} \boldsymbol{(x)}=\boldsymbol{\operatorname { s e c } \boldsymbol { x }}$, find the following limits.
The domain of the function is $\left\{\boldsymbol{x} \left\lvert\, \boldsymbol{x} \neq \frac{\pi}{2}+\boldsymbol{k} \pi\right.\right\}$.
a. $\lim _{x \rightarrow \frac{7}{3}} f(x)$

Since ${ }^{\frac{\pi}{3}}$ is in the domain of the given function, we can find the limit by direct substitution as follows:
$\lim _{x \rightarrow \frac{\pi}{3}} \sec x=\sec \frac{\pi}{3}=2$
b. $\lim _{x \rightarrow \frac{3 \pi}{2}} f(x)$

Since $\frac{\frac{3 \pi}{2}}{2}$ is NOT in the domain of the given function, we are approaching a vertical asymptote in the graph of the function and

$$
\lim _{x \rightarrow \frac{m_{\pi}}{2}} f(x) \text { does not exist }
$$

Given $\boldsymbol{f} \boldsymbol{(x)}=\boldsymbol{\operatorname { c s c } \boldsymbol { x }}$, find the following limits.
The domain of the function is $\{\boldsymbol{x} \mid \boldsymbol{x} \neq \boldsymbol{k} \pi\}$.
a. $\lim _{x \rightarrow \frac{Y}{6}} f(x)$

Since $\frac{\frac{\pi}{6}}{\text { is }}$ in the domain of the given function, we can find the limit by direct substitution as follows:

$$
\lim _{x \rightarrow \frac{7}{6}} \csc x=\csc \frac{\pi}{6}=2
$$

b. $\lim _{x \rightarrow \pi} f(x)$

Since π is NOT in the domain of the given function, we are approaching a vertical asymptote in the graph of the function and

$$
\lim _{x \rightarrow \pi} f(x)
$$

does not exist.

Problem 12:

Given $\boldsymbol{f} \boldsymbol{(x)}=\boldsymbol{\operatorname { c o t }} \boldsymbol{x}$, find the following limits. .
The domain of the function is $\{x \mid x \neq k \pi\}$.
a. $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$

Since $\frac{\pi}{2}$ is in the domain of the given function, we can find the limit by direct substitution as follows:
$\lim _{x \rightarrow \frac{\pi}{2}} \cot x=\cot \frac{\pi}{2}=0$
b. $\lim _{x \rightarrow 0} f(x)$

Since $\mathbf{0}$ is NOT in the domain of the given function, we are approaching a vertical asymptote in the graph of the function and
$\lim _{x \rightarrow 0} f(x)$
does not exist.

Given $f(x)=\frac{\sin 5 x}{x}$, find $\lim _{x \rightarrow 0} f(x)$.

Here we are going to use the special trigonometric limit

$$
\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta}\right)=1
$$

However, in our case, we let $\theta=\mathbf{5} \boldsymbol{X}$. Since we only have \boldsymbol{X} in the denominator, we must "supplement" by multiplying by $\frac{5}{5}$ as follows:

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{x} \cdot \frac{5}{5}\right)=\lim _{x \rightarrow 0}\left(5 \cdot \frac{\sin 5 x}{5 x}\right)
$$

Now we are going to use the 2nd Limit Law to write

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{x}\right)=\lim _{x \rightarrow 0}\left(5 \cdot \frac{\sin 5 x}{5 x}\right)=5 \cdot \lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{5 x}\right)
$$

By letting $\theta=\mathbf{5} \boldsymbol{x}$ and observing that $\boldsymbol{x} \rightarrow \boldsymbol{0}_{\text {if and only if } \theta \rightarrow \boldsymbol{0} \text {, we find that }}$

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{x}\right)=5 \cdot \lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{5 x}\right)=5 \cdot \lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta}\right)=5(1)=5
$$

Problem 14:

Given $f(x)=\frac{\tan x}{x}$, find $\lim _{x \rightarrow 0} f(x)$.
Here we are going to use the Quotient Identity to facilitate usage of
the special trigonometric limit $\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta}\right)=\boldsymbol{1}$.

$$
\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin x}{\cos x} \cdot \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x} \cdot \frac{1}{\cos x}\right)
$$

Now we are going to use the 3rd Limit Law to write

$$
\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right) \cdot \lim _{x \rightarrow 0}\left(\frac{1}{\cos x}\right)=1\left(\frac{1}{\cos 0}\right)=1\left(\frac{1}{1}\right)=1
$$

Given $f(x)=\frac{\mathbf{3 (1 - \operatorname { c o s } x)}}{x}$, find $\lim _{x \rightarrow 0} f(x)$.
Here we are going to use the special trigonometric limit

$$
\lim _{\theta \rightarrow 0}\left(\frac{1-\cos \theta}{\theta}\right)=0
$$

$$
\lim _{x \rightarrow 0} \frac{3(1-\cos x)}{x}=\lim _{x \rightarrow 0}\left(3 \cdot \frac{1-\cos x}{x}\right)
$$

Now we are going to use the 2nd Limit Law to write

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{3(1-\cos x)}{x} & =\lim _{x \rightarrow 0}\left(3 \cdot \frac{1-\cos x}{x}\right) \\
& =3 \cdot \lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x}\right)=3(0)=0
\end{aligned}
$$

Problem 16:

Given $\boldsymbol{f} \boldsymbol{(x)}=\sqrt{\boldsymbol{x}}$, find the following limits.
The domain of the function is $[0, \infty)$.
a. $\lim _{x \rightarrow 9} f(x)$

Since we are dealing with neither a polynomial nor a rational function, we must use the 6th Limit Law.

Please note that $\mathbf{9}$ is in the domain of the given function and NOT an endpoint. Therefore, we can find the limit as follows:

$$
\lim _{x \rightarrow 9} \sqrt{x}=\sqrt{\lim _{x \rightarrow 9} x}=\sqrt{9}=3
$$

Notice that the radicand is a polynomial (linear) function, therefore, we were able to find its limit by direct substitution!
b. $\lim _{x \rightarrow 0} f(x)$

Since $\mathbf{0}$ is a left endpoint of the domain, we can say with confidence that the leftsided limit does not exist, which means that

$$
\lim _{x \rightarrow 0} f(x)
$$

Given $\boldsymbol{f} \boldsymbol{(x)}=\sqrt{\mathbf{4 - \boldsymbol { x } ^ { 2 }}}$, find the following limits.
The domain of the function is $[-2,2]$.
a. $\lim _{x \rightarrow 0} f(x)$

Since we are dealing with neither a polynomial nor a rational function, we must use 6th Limit Law.

Please note that \boldsymbol{O} is in the domain of the given function and NOT an endpoint. Therefore, we can find the limit as follows:

$$
\lim _{x \rightarrow 0} \sqrt{4-x^{2}}=\sqrt{\lim _{x \rightarrow 0}\left(4-x^{2}\right)}=\sqrt{4-0}=2
$$

Notice that the radicand is a polynomial (quadratic) function, therefore, we were able to find its limit by direct substitution!
b. $\lim _{x \rightarrow-2} f(x)$

Since $\mathbf{- 2}$ is a left endpoint of the domain, we can say with confidence that the leftsided limit does not exist, which means that

$$
\lim _{x \rightarrow-2} f(x) \text { does not exist. }
$$

c. $\lim _{x \rightarrow 2} f(x)$

Since $\mathbf{2}$ is a right endpoint of the domain, we can say with confidence that the right-sided limit does not exist, which means that

```
\mp@subsup{\operatorname{lim}}{x->2}{}f(x)
does not exist.
```


Problem 18:

Given $f(x)=\sqrt[5]{3 x^{4}-5 x^{2}+2 x}$, find $\lim _{x \rightarrow 1} f(x)$.
The domain of the function is $(-\infty, \infty)$.
Since we are dealing with neither a polynomial nor a rational function, we must use the 6th Limit Law.

Please note that $\mathbf{1}$ is in the domain of the given function. Therefore, we can find the limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \sqrt[5]{3 x^{4}-5 x^{2}+2 x} & =\sqrt[5]{\lim _{x \rightarrow 1}\left(3 x^{4}-5 x^{2}+2 x\right)} \\
& =\sqrt[5]{3(1)^{4}-5(1)^{2}+2(1)}=\sqrt[5]{0}=0
\end{aligned}
$$

Notice that the radicand is a polynomial function, therefore, we were able to find its limit by direct substitution!

Problem 19:

Given $f(x)=\sqrt[5]{\frac{x^{3}-2 x^{2}}{x-3}}$, find $\lim _{x \rightarrow 4} f(x)$.
The domain of the function is $\{\boldsymbol{x} \mid \boldsymbol{x} \neq \mathbf{3}\}$.
Since we are dealing with neither a polynomial nor a rational function, we must use the 6th Limit Law.

Please note that 4 is in the domain of the given function and NOT an endpoint. Therefore, we can find the limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \sqrt[5]{\frac{x^{3}-2 x^{2}}{x-3}} & =\sqrt[5]{\lim _{x \rightarrow 4}\left(\frac{x^{3}-2 x^{2}}{x-3}\right)} \\
& =\sqrt[5]{\frac{4^{3}-2(4)^{2}}{4-3}}=\sqrt[5]{32}=2
\end{aligned}
$$

Notice that the radicand is a rational function, therefore, we were able to find its limit by direct substitution!

Problem 20:

Given $f(x)=x^{2 / 3}$, find ${ }^{\lim _{\rightarrow-\infty} f(x)}$.
The domain of the function is $(-\infty, \infty)$.
Since we are dealing with neither a polynomial nor a rational function, we must use the 6th Limit Law.

Please note that $\mathbf{- 8}$ is in the domain of the given function and NOT an endpoint. Therefore, we can find the limit as follows:
$\lim _{x \rightarrow-8} x^{2 / 3}=\lim _{x \rightarrow-8} \sqrt[3]{x^{2}}=\sqrt[3]{\lim _{x \rightarrow-8} x^{2}}=\sqrt[3]{(-8)^{2}}=\sqrt[3]{64}=4$
Notice that the radicand is a polynomial (quadratic) function, therefore, we were able to find its limit by direct substitution!

